5th Semester Syllabus

Sl. No.	Subject	Subject Code	Category
5.1	Materials Characterization	MM105101MM	
5.2	Metals Joining	MM105102MM	Core
5.3	Physics of Materials	MM105103MM	
	5.4.1 Special steels and Alloys	MM105201MM	
5.4.	5.4.2 Light Metals and Alloys	MM105202MM	Program Elective (PE)
5.5	5.5.1 Non-Destructive Testing	MM105301MM	On an Electrica (OE)
5.5.	5.5.2 Powder Metallurgy	MM105302MM	Open Elective (OE)
5.6	Materials Characterization Lab	MM105401MM	Laboratory
5.7	Metal Joining Lab	MM105402MM	Lucolutory
5.8	Summer Internship-1	MM105701MM	Internship

5.1 Materials Characterization

1.	Department proposing the course	Metallurgical and Materials Engineering
2.	Course Title	Materials Characterization
3.	L-T-P Structure	3-1-0
4.	Credits / # of period	4 / 40
5.	Course number(Code)	MM105101MM
6.	Status (Core/Elective) / Category	Core
7.	Pre-requisites (course no./title)	None
8.	 Course Objectives (CO) : 1. To study the principles and methods of characterizing the structure and 	
	aspects of materials.	
	2. Motivate the choice of analy	tical methods based on the capabilities of the
	method and the relevance of the results to address a specific problem3. To apply advanced spectroscopy techniques for getting structural and elementation analysis of Material.	
	4. To understand thermal analysis	s techniques to study high temperature behaviour
	of materials.	
9.	Course Syllabus:	
	Unit-1	
	Fundamentals of optics, Optical microscope and its instrumental details, Variants in	
	optical microscopes and image format	tion, Phase contrast, Polarised light, Differential
	interference contrast, Fluorescence microscopy, Sample preparation and applicat	
	of optical microscopes, elements of qu	antitative metallography and image processing.
Unit-2		
	Unit-2	
		nd scattering, properties and applications of X-
	Fundamentals of X-ray generation an	nd scattering, properties and applications of X- Bragg's law, X-Ray diffraction and applications,
	Fundamentals of X-ray generation an rays, absorption of X-rays and filters,	
	Fundamentals of X-ray generation and rays, absorption of X-rays and filters, working principles of diffractometer	Bragg's law, X-Ray diffraction and applications,
	Fundamentals of X-ray generation and rays, absorption of X-rays and filters, working principles of diffractometer	Bragg's law, X-Ray diffraction and applications, r, diffraction methods, diffraction intensities,
	Fundamentals of X-ray generation and rays, absorption of X-rays and filters, 2 working principles of diffractometer factors affecting intensity, 'structure for Unit-3	Bragg's law, X-Ray diffraction and applications, r, diffraction methods, diffraction intensities,
	Fundamentals of X-ray generation and rays, absorption of X-rays and filters, 2 working principles of diffractometer factors affecting intensity, 'structure for Unit-3 Introduction to electron microscope	Bragg's law, X-Ray diffraction and applications, r, diffraction methods, diffraction intensities, factor' calculations, Indexing of XRD patterns.

	SEM, Introduction to transmission electron microscopy (TEM), Diffraction and image	
	formation, Various imaging techniques, Sample preparation and applications of TEM.	
	Unit-4	
	SPM: STM, AFM, Nanoindentation, Spectroscopic Techniques: Fundamentals, EDS,	
	WDS, EPMA, XPS, AES, SIMS, RBS, EELS, UV-VIS, FTIR, Thermal analysis	
	technique: DTA, DSC, TGA, DMTA, Dilatometry.	
10		
10.	Text Books:-	
	1. Microstructural Characterization of Materials–D. Brandon and W.D. Kaplan,	
	John Wiley and Sons.	
	2. Materials Characterization Techniques, S. Zhang, Lin Li and Ashok Kumar,	
	CRC Press.	
	3. Materials Science and Engineering – W.D. Callister, Jr. Wiley India (P) Ltd.	
	4. Materials Science and Engineering, G.S. Upadhyaya and Anish Upadhyaya.	
	5. Fundamentals of Materials Science - the microstructure property relationship	
11	using metals as model systems, E.J. Mittemeijer, Springer	
11.	1. Reference Books	
	2. Crystals and Crystal structures, R.J.D. Tilley, John Wiley and Sons,	
	3. Science of Microscopy, P.W. Hawkes and J.C.H. Spence, Springer	
	4. Scanning Electron Microscopy & X-Ray Microanalysis, J.Goldstein et.al, Springer	
	5. Transmission Electron Microscopy – B.D.Williams& C. B. Carter, Springer	
	6. Surface Analysis Methods in Materials Science, Editors: D.J.O Connor, B.A.	
	Sextton, R. St. C. Smart, Springer	
	7. Fundamentals of Light Microscopy and Electronic Imaging, D.B.Murphy, John	
	Wiley and Sons Inc.	
	8. Characterization of Materials Volume 1 and 2, E.N. Kaufmann, John Wiley and Sons	
	9. Handbook of Analytical Methods for Materials, Materials Evaluation and	
	Engineering Inc.	
	10. Electron Microscopy and analysis, 3 rd edition, P. J. Goodhew, J. Humphreys and	
	R. Beanland, Taylor and Francis	
	11. Characterization of Materials (Materials Science and Technology:A	
	Comprehensive Treatment, Vol 2A & 2B, VCH.	

5.2 Metals Joining

1.	Department proposing the course	Metallurgical Engineering
2.	Course Title	Metals Joining
3.	L-T-P Structure	3-1-1
4.	Credits / # of period	4/40
5.	Course number(Code)	MM105103MM
6.	Status (Core/Elective) / Category	Core
7.	Pre-requisites (course no./title)	Physical Metallurgy, Heat Treatment and
		Phase Transformation
8.	Course Objectives(CO) :	
	1. Understanding of metallurgical	fundamentals of welding with regard to heat flow,
	and phase transformations duri	ng welding.
	2. To study Welding of ferrous an	nd non-ferrous metals and alloys.
	3. To gain a knowledge about quality control methods in welded joints.	
9.	Course Syllabus:	
	Unit-1	
	Introduction to various manufacturing processes. Importance of metal joining processes over other manufacturing processes, Fusion and solid state welding processes, Process involved in joining: Solidification, solidification of single phase and multiphase metals and alloys, Denderitic and cellular structure, segregation, brittleness, heat transfer, temperature distribution, cooling rate and its effect on structure and properties of weld.	
	Unit-2	
	Joint geometry, Heat input and diffusion, materials properties affecting welding	
	-	r melting, heat capacity, thermal conductivity,
	_	cy, chemical composition, hardenability, process
		eristics: Voltage, current and welding speed, Gas
		elding, MIG, TIG, Submerge arc welding, plasma
	arc welding, stud welding, resistant w	velding, electron beam welding. atomic hydrogen

	welding, friction and friction stir welding, induction welding, flash welding, laser		
	welding, thermit welding, explosive welding, ultrasonic welding.		
	Unit-3		
	Welding defects, phase transformations during welding, CCT diagrams, preheating and		
	post heating, weldability of low alloy steels, carbon equivalent, welding of cast irons,		
	stainless steels, Schaffler diagrams, Welding of non ferrous metals and alloys.		
	Unit-4		
	Welding of dissimilar materials, welding defects: cause and its remedy, shrinkage, Weld		
	Residual Stresses, Distortion, solidification cracking, hot cracking, cold cracking,		
	lamellar tearing, reheat cracking different weld zones, Fusion Zone, Partially Melted		
	Zone, Heat Affected Zone. Weld inspection and testing, corrective measures.		
10.	Text Books		
	1. Welding Metallurgy – Sindo Kou, 2 nd edition, published by Wiley		
	2. Normal Bailey, Weldability of Ferritic Steels, Jaico Publishing house, 1997		
	3. S P Tiwari, Advanced Welding Technology, S K Kataria& sons		
	4. Linnert G. E., Welding Metallurgy, Volume I and II, 4th Edition, AWS, 1994		
11.	Reference Books		
	1. Granjon H., Fundamentals of Welding Metallurgy, Jaico Publishing House, 1994		
	2. Kenneth Easterling, Introduction to Physical Metallurgy of Welding, 2nd Edition,		
	Butterworth Heinmann, 1992		
	3. Saferian D., 'The Metallurgy of Welding', Chapman and Hall, 1985		
	4. Jackson M. D., 'Welding Methods and Metallurgy', Griffin, London, 1967		
	5. Mishra. R.S and Mahoney. M.W, Friction Stir Welding and Processing, ASM,		
	2007		

5.3 Physics of Materials

1.	Department proposing the course	Metallurgical Engineering	
2.	Course Title	Physics of Materials	
3.	L-T-P Structure	3-1-0	
4.	Credits / # of period	4 / 40	
5.	Course number(Code)	MM105103MM	
6.	Status (Core/Elective) / Category	Core	
7.	Pre-requisites (course no./title)	None	
3.	Course Objectives(CO) :		
	basic physical concepts and ma2. The objective of this course a materials, as in the periodic ta	ine solids and is intended to provide students with athematical tools used to describe solids. is to study the underlying physics of a group of able, in terms of their structure, electronic, optical	
	and thermal properties.		
	3. This course helps students in providing an in-depth knowledge to understand the		
	elementary classical and quantum theory of free electrons and nearly free electrons in metals, periodic structures, and semiconductors.		
9.	-	ructures, and semiconductors.	
9.	Course Syllabus: Unit-1		
	Introduction and Approach, Properties of materials and some important relationsh Free electron theory of metals, Drude model Electronic Conductivity, Ther Conductivity - Ratio the Wiedemann Franz Law. Maxwell Boltzmann Statist Limitations of the Drude model.		
	Unit-2		
	Elementary quantum mechanics: History and Significant concepts, The Drude		
	Sommerfeld model, Fermi Dirac statistics, Density of states, Fermi Energy and Fermi		
	Surface, Improvements over Drude model, remaining limitations.		
	Unit-3		
		's Reciprocal space, Diffraction condition and its gener Seitz cells, Brillouin zones, Band Theory, of anisotropy.	

	Unit-4
	Electrons and Holes, Classification of semiconductors, Direct Band gap, indirect Band
	gap, opto-electronic materials, Magnetic properties, superconductivity, Meissner effect,
	Bose-Einstein Statistics, BCS theory, High temperature superconductors, physics of
	nano-scale materials. Semiconductors, Intrinsic and extrinsic Properties, Optical
	Properties, Doping, p-n Junctions.
10.	Text Books
	1. Solid State Physics, by N.W. Ashcroft and N.D. Mermin
11.	Reference Books
	1. Introduction to Solid State Physics by C. Kittel (Wiley, 7th Ed., 1996)

5.4.1 Special steels and Alloys

1.	Department proposing the course	Metallurgical Engineering
2.	Course Title	Special steels and Alloys
3.	L-T-P Structure	3-0-0
4.	Credits / # of period	3/30
5.	Course number(Code)	MM105201MM
6.	Status (Core/Elective) / Category	Program Elective
7.	Pre-requisites (course no./title)	Iron and Steel Making, Physical Metallurgy
8.	 high strength steels. 2. Selection of advanced and ultra applications 3. Choose the suitable tool steel f requirements 	balloying and problem associated with developing a-high strength steels for specific engineering For specific applications based on the property t treatment procedure to obtain required
9.	Course Syllabus: Unit-1 Definition of high strength steels, problems in developing high strength steels;; HSLA steels: principle of microalloying and thermomechanical processing; importance of fine grained steels, TRIP steels: Introduction, Manufacturing of TRIP Steels, and Phase Transformations during Heat Treatment to Produce TRIP Steels, Microstructure, and Mechanical Properties of TRIP Steels. Unit-2 Maraging steels: Different types of Maraging steels and applications, heat treatment of Maraging Steels, Ultrafine-grained steels: Refinement of Austenitic Microstructure and Its Influence on $\gamma \rightarrow \alpha$ Transformation, Deformation Induced Ferrite Transformation, Microstructure Refining and Strengthening of Low- carbon Bainitic Steel, Martensitic	

Steel, Carbide-free Bainite/Martensite (CFB/M) Duplex Phase Steel. Extra Low Sulfur and Non-metallic Inclusions Control for Ultra-Fine Grain High Strength Steels.

Unit-3

Stainless steels (ferritic, martensitic, austenitic), high nitrogen stainless steels manufacture and applications, sensitization of stainless steels, Heat and oxidation resistant steels Dual phase steels: Yield Strength of Dual-Phase Steels, Strain Hardening of Dual-Phase Steels, The Ductile Properties of Dual-Phase Steels. Tool steels; classification, composition, and application, constitution diagram of high-speed steels, special problems in heat treatment of tool steels.

Unit-4

Types of cast irons - grey, SG, white, malleable; austempered ductile iron; alloy cast irons, Ni hard, high, silicon cast irons, heat resistant cast irons- high chrome cast iron-structure, property and engineering applications.

10.	Text Books	
	1. W.C. Leslie, Physical Metallurgy of Steels, Tech Books, 1991.	
	2. ASM Hanbook, Vol 1. Properties and Selection: Irons, Steels, and High-	
	Performance Alloys, 1990.	
	3. Pickering P. B., 'Physical Metallurgy and the Design of Steels', Applied Science	
	Publishers, 1983.	
	4. Pereloma and V. E. David, Phase Transformations in Steels Diffusion less	
	Transformations, High Strength Steels, Modelling and Advanced Analytical	
	Techniques Volume 2, Wood head Publishing Series, 2017.	
	5. S. Mahadev and T. Muralidhar ,Welding and Joining of Advanced High Strength	
	Steels (AHSS), Woodhead Publishing Series, 2017.	
11.	Reference Books	
	1. George Adam Roberts, Richard Kennedy, G. Krauss: Tool Steels, 5th Ed., ASM,	
	1998	
	2. Albert M. Hall: Introduction to Today's Ultrahigh-strength Structural Steels, ASTM	
	Special Technical Publication, 1973	
	3. R.F. Decker: Source Book on Maraging Steels, ASM, 1979	

5.4.2 Light Metals and Alloy

1.	Department proposing the course	Metallurgical Engineering
2.	Course Title	Light Metals and Alloy
3.	L-T-P Structure	3-1-0
4.	Credits / # of period	3 / 30
5.	Course number(Code)	MM105202MM
6.	Status (Core/Elective) / Category	Program Elective
7.	Pre-requisites (course no./title)	Physical Metallurgy
8.	titanium 2. Understanding the nomenclature metal alloys.	ion light metals: aluminium, magnesium and e, processing and applications of various light hanisms applicable in the light metal alloys.
9.	Course Syllabus: Unit-1 Introduction to Light Metals & Alloys, Importance of Strength to weight ratio and its application. General principles of production of aluminium, magnesium and titanium. Application of light metals in industrial sectors.	
	Unit-2 Introduction to aluminium alloys, classification into aluminium series, Properties and physical metallurgy of Al-Cu, Al-Mg, Al-Zn, Al-Mn,Al-Cu-Mg, Al-Si-Mg, Al-Zn-Mg and Al-Si alloys. Understanding the important phase diagrams of aluminium alloys. Importance of age hardening in aluminium alloys. Applications of wrought and cast Al alloys. Nomenclature and temper designation for Al alloys. Development of new alloys for advanced applications.	
	magnesium series. Important alloying el	eduction of the alloys and classification into lements and their effects on the microstructure ment and precipitation hardening applicable in

	magnesium alloys. Mg-Al-Zn, Mg-Li, Mg-Zr and Mg-rare earth metal alloys. Corrosion	
	resistance of Mg-alloys.	
	Unit-4	
	Introduction to titanium alloys, commercially Pure Titanium and its properties and its	
	applications. Importance of the interstitial solid solutions of Titanium and the	
	strengthening mechanisms applicable in the Ti-alloys. Classification of titanium alloys	
	into Alpha Ti alloys, Beta Ti-alloys, Alpha plus Beta Ti alloys. Important titanium alloys	
	with their applications, Ti-6Al-4V, Ti-8Al-1Mo-1V, Ti-13V-11Cr-3Al alloys.	
	Shape memory and other strategic applications of Ti-alloys.	
10.	Text Books	
	1. Heat treatment, structure and properties of Nonferrous alloys- Charlie Brooks, ASM	
	Metals Park, Ohio, USA.	
	2. Light alloys: Metallurgy of the light metals by I. J. Polmear.	
	3. Introduction to Physical Metallurgy – S.H. Avner.	
11.	Reference Books	
	1. Engineering Physical Metallurgy – Lakhtin.	
	2. ASM Metals Handbook Vol-1 & 2.	
	3. Metallurgical abstracts on light metals and alloysKeikinzokuShōgakukai, Light	
	Metal Educational Foundation., 1999.	

5.5.1 Non Destructive Testing

1.	Department proposing the course	Metallurgical Engineering
2.	Course Title	Non Destructive Testing
3.	L-T-P Structure	3-0-0
4.	Credits / # of period	3 / 30
5.	Course number(Code)	MM105301MM
6.	Status (Core/Elective) / Category	Open Elective
7.	Pre-requisites (course no./title)	Testing of Materials
8.	Course Objectives(CO) :	
	1. In-depth coverage of the applic	ations of Non-Destructive Testing's for materials
	characterization.	
	2. Various methods and principles	of testing involved in the study of materials.
	3. Important instrumentation of th	e processes relevant to the testing.
9.	Course Syllabus:	
	Unit-1	
	Basic Concepts and Surface Inspection: Concepts of Non-Destructive testing, relative	
	merits and limitations. Types of defects, Visual inspection, Liquid penetrant	
	inspection-principles, practice, applications, advantages and limitations. Principles,	
	applications and instrumentation of thermal inspection, Infrared Thermography.	
	Unit-2 Radiography: X-rays and Gamma rays. Properties of X-rays relevant to NDE. Absorption	
	of rays, scattering, types and use of t	filters. Gamma ray sources, characteristics of
	Gamma rays, Radiography of pipe	s, welds and castings. Safety with X-rays and
	Gamma rays.	
	Unit-3	
	Ultrasonics: Types of ultrasonic	waves, principles of wave propagation,
	characteristics of ultrasonic waves,	attenuation, Production of ultrasonic waves,
	Ultrasonic probes, couplants. Inspe	ection methods-Pulse echo, Transmission and
	Resonance techniques. Types of	f scanning. Immersion testing, thickness
	measurement. Test block. IIW Sta	ndard and reference blocks, calibration in UT.
	Ultrasonic testing of welds and casting	S.

	Unit-4	
	Magnetic Particle Inspection: Principles, applications, Magnetization methods,	
	magnetic particles. Dry technique and wet technique, demagnetization. Eddy current	
	testing - principles, impedance diagrams, test coils and probes, inspection methods and	
	applications. Other Techniques: Holography and Acoustic emission technique.	
	Pressure and leak testing. Brief overview of Non-Destructive testing standards -	
	ASTM, ISO.	
10.	Text Books	
	1. Barry Hull and Vernon John, Non-Destructive Testing, ELBS/Macmillan,UK,	
	1988.	
	2. Baldev Raj, Jaya kumar T. Thavasimuthu M, Practical Non-Destructive Testing,	
	Narosa Publishing House, New Delhi, 1997.	
	3. McGonnagle, W.T, Non-Destructive Testing, McGraw-Hill Book Co, USA,	
	1988.	
11.	Reference Books	
	1. ASM Metals Hand Book, Non-Destructive Evaluation and Quality Control,	
	American Society of Metals, Metals Park , Ohio, USA, 1989.	
	2. Louis Cartz, Non-Destructive Testing, ASM International, Metals Park Ohio, USA,	
	1995.	

5.5.2 Powder Metallurgy

1.	Department proposing the course	Metallurgical and Materials Engineering
2.	Course Title	Powder Metallurgy
3.	L-T-P Structure	3-0-0
4.	Credits / # of period	3/ 30
5.	Course number(Code)	MM105302MM
6.	Status (Core/Elective) / Category	Open Elective
7.	Pre-requisites (course no./title)	None
8.	Course Objectives (CO) :	
	1. To understand history, importance,	and applications of powder metallurgy.
	2. Acquaint with the knowledge power	der characteristics, production methods, powder
	characterization techniques and met	thods of powder compaction.
	3. Acquire knowledge on the types of	sintering and mechanism of sintering.
	4. Understand causes of defects in powder metallurgy processed materials and method	
	to minimize defects.	
9.	Course Syllabus:	
	Unit-1	
Introduction: Historical and modern developments in Powder Metallurgy.		velopments in Powder Metallurgy. Advantages,
	limitations and applications of Powder I	Metallurgy. Basic Steps for Powder Metallurgy.
	Characteristics of metal powder: Chem	nical composition, Particle size, shape and size
	distribution, Characteristics of powder mass such as apparent density, tap densi	
	rate, friction index. Powder treatment a	and handling, Properties of green compacts and
	sintered compacts.	
	Unit-2	
	Metal powder production methods: Atomization, Reduction from oxide, Electrolysis,	
	Crushing, Milling, Condensation of metal vapour, Hydride and carbonyl processes,	
	Mechanical Alloying, New developments.	
	Powder Characterization: Powder conditioning, fundamentals of powder compaction,	
	density distribution in green compacts, compressibility, green strength, pyrophorocity	
and toxicity.		

	Powder Compaction Methods: Basic aspects, types of compaction presses, compaction		
	tooling and role of lubricants, Single and double die compaction, isostatic pressing, hot		
	pressing, defects. Powder Forming: Powder rolling, powder forging, powder extrusion		
	and explosive forming technique.		
	Unit-4		
	Sintering: Definition, stages, effect of variables, sintering atmospheres and furnaces,		
	Mechanism, liquid-phase sintering, Secondary operations.		
	Sintered Products: Study of sintered bearings, cutting tools, metallic filters, friction and		
	antifriction parts and electrical contact materials.		
	Defects in Powder metallurgy processed materials and their processing to minimize		
	defects etc.		
10.	Text Books		
	1. Powder Metallurgy Science by R.M German.		
	2. Powder Metallurgy: Science, Technology, and Materials byAnishUpadhyaya, Gopal		
	Shankar Upadhyaya.		
	3. Powder Metallurgy by A.K. Sinha.		
	4. Powder Metallurgy: Science, Technology and Applications by PC Angelo and R.		
	Subramanyam.		
11.	Reference Books		
	1. Introduction to Powder Metallurgy by J.S. Hirshhorn.		
	2. Treatise on Powder Metallurgy: Technology of Metal Powders and Their Products		
	by C. GoetzelVol 1& II.		
	3. Powder Metallurgy: Principles and Applications by F.V. Lenel.		
	4. Powder Metallurgy Practice and Applications by R.L. Sands & C.R. Shakespeare.		
	5. ASM W.D.Kingery, Introduction to Ceramic Material, Volume 18, Wiley 1960.		
	6. Barsaum - Fundamentals of Ceramics- 2003.		
1			

5.6 Material Characterization Laboratory

1.	Department proposing the course	Metallurgical and Materials Engineering
2.	Course Title	Material Characterization Laboratory
3.	L-T-P Structure	0-0-2
4.	Credits / # of period	1/20
5.	Course number(Code)	MM105401MM
6.	Status (Core/Elective) / Category	Laboratory
7.	Pre-requisites (course no./title)	Material Characterization (Theory)
8.	Course Objectives (CO) :	
	 The students will be able to perform basic materials characterization and analysis using optical microscope, SEM, EDS, XRD, DSC etc. Sample preparation for various characterization processes. 	
	 Understanding and evaluation of the results obtained. 	
9.	List of Experiments	
	 To prepare metal specimen for microscopy and XRD characterization. Quantitative and qualitative analysis of microstructure using optical microscopy. Sputter coat and SEM-EDS analysis of specimen. Qualitative analysis of crystalline materials by X-Ray Diffraction. Thermal analysis of specimen using DSC. 	
10.	Text Book	
	1. Characterization of Materials Volume 1 and 2, E.N. Kaufmann, John Wiley and Sons,	
	2003.	
11.	Reference Books	
	Handbook of Analytical Methods for M	laterials, Materials Evaluation and Engineering
	Inc. 2001.	

5.7 Metal Joining Laboratory

1.	Department proposing the course	Metallurgical Engineering
2.	Course Title	Metal Joining Laboratory
3.	L-T-P Structure	0-0-2
4.	Credits / # of period	1/ 20
5.	Course number(Code)	MM105402MM
6.	Status (Core/Elective) / Category	Laboratory
7.	Pre-requisites (course no./title)	Metal Joining Theory
8.	Course Objectives(CO) :	
	1. Preparation of samples for varie	ous types of joint.
	2. Hands on experience of various	joining techniques.
	3. Mechanical and Microstructura	l characterization of welded joints.
	4. Determination of weakest zone	in the welded sample and understand fracture
	behavior.	
9.	List of Experiments	
	1. Metallic sample preparation for	welding
	2. Study of Electric Arc Welding Unit	
	3. Study of Metal Inert Gas Unit	
	4. Study of Tunguston Inert Gas Unit	
	5. Welding of prepared similar ste	el work pieces in arc welding unit
	6. Welding of prepared similar Al	uminum work pieces in TIG welding unit
	7. Macro and micro-structural stud	dies of weldments
	8. Study hardness variation across	different weld zones
	9. Tensile test of the welded struct	ure-Comparision between tensile strength of base
	metal and weldment	
	10. Fractographic study of the fractured specimen	
10.	Text Book	
	1. Welding Metallurgy – Sindo Kou, 2 nd edition, published by Wiley.	
11.	Reference Books	

ſ	1. Granjon H., Fundamentals of Welding Metallurgy, Jaico Publishing House, 1994.	
	2.	Kenneth Easterling, Introduction to Physical Metallurgy of Welding, 2nd Edition,
		Butterworth Heinmann, 1992.

5.8 Summer Internship – I

1.	Department proposing the course	Metallurgical and Materials Engineering
2.	Course Title	Summer Internship – I
3.	L-T-P Structure	
4.	Credits	1
5.	Course number(Code)	MM105701MM
6.	Status (Core/Elective)	Internship
7.	Pre-requisites (course no./title)	

<u>6th Semester Syllabus</u>

Sl. No.	Subject	Subject Code	Category
6.1	Corrosion Engineering	MM106101MM	
6.2	Polymer, Ceramic and Composite Materials	MM106102MM	Core
6.3	Metal Forming Processes	MM106103MM	
6.4.	6.4.1 Artificial Intelligence in Materials Engineering	MM106201MM	Program Elective (PE)
	6.4.2 Liquid Metal Engineering	MM106202MM	
6.5	6.5.1 Fracture Mechanics and Failure Analysis	MM106301MM	Open Elective (OE)
	6.5.2 Tribology of Materials	MM106302MM	
6.6	Corrosion Engineering Lab	MM106401MM	Laboratory
6.7	Academic Writing and Seminar	MM106601MM	Seminar

6.1 Corrosion Engineering

1.	Department proposing the course	Metallurgical and Materials Engineering	
2.	Course Title	Corrosion Engineering	
3.	L-T-P Structure	3-1-0	
4.	Credits / # of period	4 / 40	
5.	Course number (Code)	MM106101MM	
6.	Status (Core/Elective) / Category	Core	
7.	Pre-requisites (course no./title)	Metallurgical Thermodynamics & Kinetics	
8.	Course Objectives (CO) :		
	1. To introduce the concept of interaction of surfaces from surrounding.		
	2. Application of Kinetics and Therm	. Application of Kinetics and Thermodynamics in Materials Degradation.	
	3. Introducing concept of wet and dry	(high temperature) corrosion.	
	4. Introduction of various electrochem	nical characterization techniques.	
9.	Course Syllabus:		
	Unit-1		
	Charged Interfaces, The Electrical Double Layer, The Gouy-Chapman Model of the		
	Electrical Double Layer, Electrode Potentials, Electrochemical Cells and Galvanic		
	Corrosion, Electrochemical Cells, Ele	Electrochemical Cells, Electrochemical Cells on the Same Surface, Galvanic	
Corrosion, Differential Concentration Cells, Metal Ion Concentrat		Cells, Metal Ion Concentration Cells.	
	Unit-2		
	Pourbaix Diagrams, Applications of Pourbaix Diagrams to Corrosion, Limitations of		
	Pourbaix Diagrams, Units for Corrosion Rates, Methods of Determining Corrosion Rates,		
	Electrochemical Polarization, Anodic and Cathodic Polarization, Electrode Kinetics for		
	Activation Polarization, Absolute Reaction Rate Theory, Electrode Kinetics for Non-		
	Corroding Metals, The Tafel Equation, Mixed Potential Theory, Electrode Kinetic		
	Parameters.		
	Unit-3		
	Applications of Mixed Potential Theory, Metals in Acid Solutions, Tafel Extrapolation,		
	Linear Polarization Method, Applications of the Linear Polarization Technique, Small-		
	Amplitude Cyclic Voltammetry, Concentration Polarization and Diffusion, Solubility		
	and Diffusion, Electrode Kinetics for Concentration Polarization, Concentration Profile		

Near an Electrode Surface, Limiting Diffusion Current Density, Diffusion Layer vs. The Diffuse Layer, Current–Potential Relationship for Concentration Polarization, Linear Polarization, Concentration Polarization in Acid Solutions, Theories of Passivity, Properties of Passive Oxide Films, Passivity in Stainless Steels, Composition of Passive Films on Stainless Steels, Passivity by Alloying with Noble Metals, Anodic Protection, Crevice Corrosion, Crevice Corrosion Testing, Critical Pitting Potential, Differences Between Pitting and Crevice Corrosion, Detection of Corrosion Pits, Mechanically Assisted Corrosion, Stress-Corrosion Cracking, Types of Inhibitors, Crevice Corrosion, Stress-Corrosion Cracking and Corrosion Fatigue, Vapor-Phase Inhibitors, Corrosion Under Organic Coatings, Paints and Organic Coatings, Underfilm Corrosion.

Unit-4

AC Impedance, Relaxation Processes, Experimental Setup, Complex Numbers and AC Circuit Analysis, Additional Methods of Plotting Impedance Data, Multiple Time Constants and the Effect of Diffusion, Kramers–Kronig Transforms, Theory of High-Temperature Oxidation, Effect of Temperature on the Oxidation Rate, Defect Nature of Oxides, Semiconductor Nature of Oxides, Hauffe Rules for Oxidation, Effect of Oxygen Pressure on Parabolic Rate Constants, Non-uniformity of Oxide Films, Protective vs. Non-protective Oxides, Pilling–Bedworth Ratio, Properties of Protective High-Temperature Oxides, Biocorrosion, mechanisms and microbiological aspects. Corrosion under sub-soil and sea water conditions- Marine biofouling and biocorrosion with respect to industrial conditions. Methods of abatement.

10. Text Books:-

- Introduction to Corrosion Science: E. McCafferty, Springer, ISBN: 978-1-4419-0454-6.
- 2. M.G. Fontana: Corrosion Engineering, 3rd Edition, McGraw-Hill, N.Y., 1978.

11. Reference Books/ Online Course Materials

- 1. Revie, W.R. and Uhlig, H.H., *Corrosion and Corrosion Control*, 4th edition, Wiley, 2008.
- Natarajan, K.A., Advances in Corrosion Engineering, NPTEL Course Material, Indian Institute of Science Bangalore, <u>http://nptel.ac.in/courses/113108051/</u>
- 3. NPTEL lectures by Prof. Kallol Mondal.

6.2 Polymer, Ceramic and Composite Materials

1.	Department proposing the course	Metallurgical and Materials Engineering
2.	Course Title	Polymer, Ceramic and Composite Materials
3.	L-T-P Structure	3-1-0
4.	Credits / # of period	4 / 40
5.	Course number (Code)	MM106102MM
6.	Status (Core/Elective) / Category	Core
7.	Pre-requisites (course no./title)	Mechanical Behavior of Materials
8.	Course Objectives (CO) :	
	materials on multiple length sca	
	composites.	chniques for producing polymer, ceramics and
	 To develop knowledge of use of polymer, ceramics and composite mat different applications. 	
4. To demonstrate the relationship among synthesis, processing, and polymer, ceramics and composite materials.		
9.	Course Syllabus:	
	Unit-1	
	Polymers: Classification of polymerization reaction, semi-crystalline and amorpho polymers, Elastomers, Additives, Fillers, Viscoelasticity, Molecular theory	
	viscoelasticity, Glass and rubbery sta	tes, Glass transition temperature, Crystallinity,
	Deformation, Mechanical response, Hig	gh temperature specialty polymers, Polymer liquid
	crystals.	
Unit-2		
	Ceramics: Definition & scope, classif	ication of ceramic materials - conventional and
	advanced, Area of applications, Ben	eficiation process, Forming processes, Drying
	processes, Shaping, Surface finishing,	Glazing, Firing, Defects, Applications.
	Unit-3	

	application, Classification of Composite, Role of interfaces: wettability, bonding,	
	interactions and tests for measuring Interfacial strength, Advantages and disadvantages of different composites.	
	or different composites.	
	Unit-4	
	Polymer Matrix Composites, Ceramic Matrix Composites, Metal Matrix Composites,	
	Processing, and Applications, Hybrid and Green composites, Mechanics, Fracture,	
	Toughening Mechanisms.	
10.	Text Books:-	
	1. Composite Materials – Science & Engineering, K.K. Chawla, Springer-Verlag,	
	New York, 1987.	
	2. An Introduction to Composite Materials, Hull, Cambridge, 2nd Edt	
	3. Young and Lovell, Introduction to Polymers, Nelson Thomes.	
	4. Introduction to Ceramics – W.D.Kingery	
	5. Fundamentals of Ceramics by Michel Barsoum, Mcgraw Hill	
11.	Reference Books:	
	1. Composites, Engineered Materials Handbook, Vol.1, ASM International, Ohio,	
	1988.	
	2. Structure and Properties of Composites, Materials Science and Technology,	
	Vol. 13, VCH, Weinheim, Germany, 1993	
	3. Composite Materials: Engineering and Science, F.L. Matthews and R.D.	
	Rawlings, Chapman & Hall, London, 1994	
	4. S. Kumar: Hand book of ceramics ; Vol – I & II	

6.3 Metal Forming Processes

1.	Department proposing the course	Metallurgical and Materials Engineering	
2.	Course Title	Metal Forming Processes	
3.	L-T-P Structure	3-1-0	
4.	Credits / # of period	4 / 40	
5.	Course number (Code)	MM106103MM	
6.	Status (Core/Elective) / Category	Core	
7.	Pre-requisites (course no./title)	Mechanical Behavior of Materials	
8.	Course Objectives(CO) :		
	1. Gain an understanding of fundament	ntals of metal working.	
	2. Analyze the behavior of metals dur	ing plastic deformation.	
	 Obtain a working knowledge of forging, rolling, extrusion, wire drawing etc. 		
9.	Course Syllabus:		
	Unit-1		
	Fundamentals of Metal Working: Classification of forming processes, Mechanics		
	metal working for slab method and Deformation zone geometry. Colo		
	Recovery, Recrystallization and grain growth, hot working, Strain-Rate effects, Work		
	done in plastic deformation processes, Yield criterion and its significance in meta		
	working.		
	Unit-2		
	Forging: Classification of forging proc	esses, forging equipment. Forging in plane strain.	
	Open-die forging, closed-die forging,	, Forging pressure & load calculation, Forging	
	defects.		
	Unit-3		
	Rolling of Metals: Classification of rolling processes, rolling mills. Hot rolling, cold		
rolling, geometrical relationships in rolling, Simplified		olling, Simplified analysis of rolling load, rolling	
		force, power required in rolling, effects of front &	
back tensions, friction hill curve and factors affecting it. Maximum		ç	
	problems and defects in rolled products	S.	
	Unit-4		

	Extrusion: Classification of extrusion processes, extrusion equipment. Hot extrusion.	
	Deformation and defects in extrusion. Analysis of extrusion process. Cold extrusion.	
	Extrusion of tubing and production of seamless pipe and tubing. Rod and wire drawing,	
	tube drawing processes, residual stresses in rod, wire and tubes. Sheet metal forming	
	processes, Equipment.	
10.	Text Books	
	1. Mechanical Metallurgy by G.E. Dieter (3rd edition)	
	2. Mechanical working of metals - A. Avitzur.	
11.	Reference Books	
	1. Engineering Metallurgy – Part-II – Higgins	

6.4.1 Artificial Intelligence in Materials Engineering (Program Elective)

1.	Department proposing the course	Metallurgical and Materials Engineering	
2.	Course Title	Artificial Intelligence in Materials Engineering	
3.	L-T-P Structure	3-0-0	
4.	Credits / # of period	3/ 30	
5.	Course number (Code)	MM106201MM	
6.	Status (Core/Elective) / Category	Program Elective	
7.	Pre-requisites (course no./title)	Physical Metallurgy, Iron and steel making, Math-	
		I, Math- II and Mathematics- III	
8.	Course Objectives (CO):		
	1. To understand what AI is, sco	ope of its applications in materials and metallurgical	
	engineering cases.2. To expose the students to the technology like Machine Learning, Deep Learning, Neural Networks, and Genetic Algorithms.		
	3. To build the knowledge to describe several metallurgical and materials problems in context of industry and research and development surrounding AI.		
	4. To Articulate the current trends and future of materials and metallurgical industrie progression of AI technology		
9.	Unit 1		
	Introduction to artificial intelligence and machine learning, History, Philosophy, an Definitions of AI, The Foundation of AI, correlation between materials structure		
	properties, phenomena, and process. Scope of solving industrial and research-based		
	materials problem using AI. Re	ole of AI in solving materials science problems.	
	Accelerating Materials Development and Deployment.		
	Unit 2		
	Fundamental of Artificial neural	network, basic elements and principles, types, etc.	
	Supervise unsupervised and reinfo	preement learning. Back propagation algorithm, hyper	
	parameters loss function transf	fer function and optimization algorithms, recent	
development, and deep learning. Applications and examples of solving		. Applications and examples of solving materials	

problem, structure properties linking, process property linking, creating computer vision of microstructure.

Unit 3

Framing a material problem as optimization search problem, classical and heuristic search. local and global search, Genetic Algorithms as AI based search tool, single and multi-criteria search, constraints etc. Example study with solving the blast furnace operation-based problem / design of steel and other alloys / glass and ceramic.

Unit 4

Reasoning and Association rule mining for solving materials problem, decision trees, fuzzy logic and reasoning, fuzzy set, fuzziness in materials systems, a fuzzy variable with metallurgical examples, fuzzy inference system case example of fuzzy modelling materials problem solving. Rough set theory and its applications in alloy design. Hybrid system and their application in materials with examples of more complex problems.

10. Textbooks

- 1. Dan W. Patterson, Introduction to AI & Expert System, PHI, First Edition, 2015.
- 2. Russel & Norvig, Artificial Intelligence: A Modern Approach, Pearson Education, by Stuart Russell and Peter Norvig. Cahn, Fourth edition, 2019
- 3. Artificial Intelligence: Elaine Rich, Kevin Knight, Mc-Graw Hill, 2nd Edition 1991.
- 4. Rajalingappa Shanmugamani, Deep learning for Computer Vision, Packt Publication, Mumbai India, First Edition, 2018.

11. Reference Books

- 1. Neuro-Fuzzy and Soft Computing: A computational approach to learning and machine intelligence, Indian Edition, Prentice Hall, USA 1997.
- 2. David E. Goldberg, Genetic Algorithms in search of optimization and machine Learning, Pearson Education Inc. Fifth Indian Reprint, 2002
- 3. Luger Artificial Intelligence, Pearson Education India; 5th edition, 2008.
- 4. S. Rajasekaran, G.A.V. Pai: Neural networks, Fuzzy Logic and Genetic Algorithms Synthesis and Applications, Prentice-Hall of India.

6.4.2 Liquid Metal Engineering (Program Elective)

1.	Department proposing the course	Metallurgical and Materials Engineering	
2.	Course Title	Liquid Metal Engineering	
3.	L-T-P Structure	3-0-0	
4.	Credits / # of period	3/30	
5.	Course number (Code)	MM106202MM	
6.	Status (Core/Elective) / Category	Program Electives	
7.	Pre-requisites (course no./title)	Physical Metallurgy	
8.	Course Objectives (CO):		
	 To understand the limitation and challenges of the present casting and me processing technologies of industries. To understand and develop knowledge of various force convection technologies us for melt conditioning. To understand the effect of force convection on liquid metal to alter microstruct and mechanical properties. 		
9.	9. Course Syllabus:		
	Unit-1 Limitations of metal forming and heat treatment processes, Economics of m processing and its impact, introduction to reo-casting and its limitations, introduction		
	the concept of liquid metal engineering.		
	Unit-2		
	Solidification of metal under various conditions, effects of introducing grain ref modifiers on castings, limitations of grain refiners and modifiers, effect of convection on solidification mechanism in pure metal and alloy systems, tools		
convection, nucleation under force convection, effect of forced convections		vection, effect of forced convections on growth.	
	Unit-3		
	Various force convection technologies, Principles of ultrasonic treatment of liquid metal,		
	low frequency vibrations and ultrasound, propagation of acoustic waves in the melt,		
	acoustic cavitations in liquid metal, mec	hanical force on liquid metal and its effects, types	
	of mechanical stirrers and their effects,	stirrer materials, effect of electromagnetic forces	

	on liquid metal, static magnetic field, pulsed electric field, electromagnetic oscillation
	field.
	Unit-4
	Effect of introducing force convection during solidification on the microstructure and
	mechanical properties of metals and alloys, designing new caster for introducing external
	fields into liquid metal during casting.
10.	Text Books: 1.Solidification processing of metallic alloys under external fields, Dmitry
	G. Eskin, JiaweiMi, Springer 2018
11.	Reference Books: 1. Ultrasonic Treatment of Light Alloy Melts, By Georgy I. Eskin
	and <u>Dmitry G. Eskin</u> , 2017 by CRC Press.

1.	Department proposing the course	Metallurgical and Materials Engineering
2.	Course Title	Fracture Mechanics and Failure Analysis
3.	L-T-P Structure	3-0-0
4.	Credits / # of period	3/ 30
5.	Course number (Code)	MM106301MM
6.	Status (Core/Elective) / Category	Open Elective
7.	Pre-requisites (course no./title)	Physical Metallurgy, Mechanical Behaviour of
		Materials
8. Course Objectives(CO) :		
	1. To introduce the concept fract	ture toughness of materials in presence of crack.
	2. Effect of crack size and shape	on crack propagation behaviour.
3. Learn the various factors affecting/causing		cting/causing failures.
	4. Design new materials that ca	n withstand failures, based on the environmental
	considerations and application.	
9.	Course Syllabus:	
Unit-1		
Cohesive strength of metals, relationship between cohesive strength and ac of metals, concept of whiskers, Linear Elastic Fracture Mechanics, Griffi		ship between cohesive strength and actual strength
		ear Elastic Fracture Mechanics, Griffiths analysis,
	concept of energy release rate and fracture energy, critical stress intensity plasticity at the crack tip, plastic zone shape and size, effect of constraint, plane plane strain, thickness, EPFM, CTOD, J integral.	
Unit-2		
	Stages of failure analysis, classification and identification of various types of fracture.	
Overview of fracture mechanics, characteristics of ductile and brittle concepts, fracture characteristics revealed by microscopy, factors affe		tracteristics of ductile and brittle fracture. General
		ealed by microscopy, factors affecting fatigue life
	Creep, stress rupture, elevated temperature fatigue, metallurgical instabilities,	
	environmental induced failure. Some case studies failures.	
	Unit-3	

6.5.1 Fracture Mechanics and Failure Analysis (Open Elective)

	Analysis of wear failure. Corrosion failures- factors influencing corrosion and wear	
	failures, Procedure for analyzing wear and corrosion failures, various types of hydrogen	
	damage failures. Causes of failure in forming, failure of iron and steel castings, improper	
	heat treatment, stress concentration and service conditions. Failure of weldments-reasons	
	for failure procedure for weld failure analysis.	
	Unit-4	
	Reliability concept and hazard function, life prediction, condition monitoring, application	
	of Poisson, exponential and Weibull distribution for reliability, bath tub curve, parallel	
	and series system, mean time between failures and life testing.	
10.	. Text Books	
	1. G.E. Dieter: Mechanical Metallurgy, McGraw Hill, 1988	
	2. T.L. Anderson: Fracture Mechanics- Fundamentals and Applications, 3rd Ed., CRC	
	Press, 2011	
	3. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 4th	
	Ed., John Wiley & Sons, 1995	
11.	Reference Books	
	1. ASM Metals Handbook, Failure Analysis and Prevention, ASM Metals Park. Ohio,	
	Vol.10, 10th Edition, 1995	
	2. Colangelo.V.J. and Heiser.F.A., Analysis of Metallurgical Failures, John Wiley and	
	Sons Inc. New York, USA, 1974	

6.5.2 Tribology of Materials (Open Elective)

1.	Department proposing the course	Metallurgical and Materials Engineering	
2.	Course Title	Tribology of Materials	
3.	L-T-P Structure	3-1-0	
4.	Credits / # of period	3 / 30	
5.	Course number (Code)	MM106302MM	
6.	Status (Core/Elective) / Category	Open Elective	
7.	Pre-requisites (course no./title)	None	
8.	 Course Objectives(CO) : Understanding the friction, wear and lubrication in materials and their industrial importance. Optimization of process parameters and material properties to improve tribological properties of materials. Understanding the techniques for improvement in tribological performance of 		
9. Course Syllabus:			
	Unit-1 Introduction to Tribology, History and industrial importance of tribology, Surface properties and measurements, Nature of metallic surface, surface geometry, measurement of surface topography, quantifying surface roughness, contact between surfaces;		
	Unit-2		
Friction, the laws of friction, measurement of friction, origin of friction, the friction; adhesion- theory, lubricant types, composition and their properties, see lubricants. Wear: Types of wear, adhesive wear, Archard's law, abrasive wear wear, factors affecting corrosive wear.		es, composition and their properties, selection of	
	Unit-3		
	and water jet erosion as per ASTM stand	s- pin on disc, pin on drum, slurry wear, air jet dards. Worn out surface and wear mechanisms. and microstructures on Tribological behaviour	
	Unit-4		

	composition, surface coating- welding, flame, spraying, plasma spraying, electroplating	
	and electroless coating, chemical vapour deposition (CVD) and physical vapour	
	deposition (PVD), super hard coatings, various applications.	
10.	Text Books	
	1. Harish Hirani, Fundamentals of Engineering Tribology with applications,	
	Cambridge University press, 2016.	
	2. PrashantaSahu, Engineering Tribology, PHI, 2018.	
	3. I M Htchings, Tribology: Friction and wear of Engineering Materials,	
	Butterworth-Heinemann, 2001.	
11.	Reference Books / Online learning resources	
	1. Williums, Engineering Tribology. New York : Cambridge University Press, 2006.	
	488 p. ISBN 0-521-60988-7.	
	2. P Blaškovitš, M Dzimko, J Balla, Tribológia. Bratislava: Alfa, 1990. ISBN 80-	
	05-00633-0.	
	3. https://nptel.ac.in/courses/112102015/1	

6.6 Corrosion Engineering Laboratory

_	-
 its / # of period se number (Code) s (Core/Elective) / Category equisites (course no./title) se Objectives(CO) : To introduce the experimental Introduction to direct current Introduction to alternating current 	1 / 20 MM106401MM Laboratory None I aspects of weight loss test. characterization techniques.
se number (Code) s (Core/Elective) / Category equisites (course no./title) se Objectives(CO) : . To introduce the experimental . Introduction to direct current . Introduction to alternating cur	MM106401MM Laboratory None l aspects of weight loss test. characterization techniques.
s (Core/Elective) / Category equisites (course no./title) se Objectives(CO) : . To introduce the experimental . Introduction to direct current . Introduction to alternating cur	Laboratory None l aspects of weight loss test. characterization techniques.
equisites (course no./title) se Objectives(CO) : . To introduce the experimental . Introduction to direct current . Introduction to alternating cur	None l aspects of weight loss test. characterization techniques.
 se Objectives(CO) : To introduce the experimental Introduction to direct current Introduction to alternating current 	l aspects of weight loss test. characterization techniques.
 To introduce the experimental Introduction to direct current Introduction to alternating current 	characterization techniques.
 Introduction to direct current Introduction to alternating cur 	characterization techniques.
. Introduction to alternating cur	1
_	rrent characterization techniques.
. Introduction to high temperat	_
0 1	cure oxidation and rate measurement.
List of Experiments	
-	t Potential
 Measurement of Open Circuit Potential Corrosion Rate of Measurement by Tafel's extrapolation 	
. Corrosion Rate of Measurement by Linear Polarization	
 Electrochemical Impedance Characterization of an system: Bode's plot 	
 Electrochemical impedance characterization of an system. Bode's plot Corrosion Rate measurement by Weight Loss method 	
 6. Effect of cold working on Corrosion Rate 	
_	
. Effect of Stirring and Temper	rature on Corrosion Rate
9. Determination of Scaling Temperature of Mild Steel	
Text Books	
1. Introduction to Corrosion Science: E. McCafferty, Springer, ISBN: 978-1-	
4419-0454-6	
2. M.G. Fontana: Corrosion Engineering, 3rd Edition, McGraw-Hill, N.Y., 1978	
rence Books	
1. ASM Handbook on Corrosion Engineering	
	 Corrosion Rate of Measurem Corrosion Rate of Measurem Electrochemical Impedance O Corrosion Rate measurement Effect of cold working on Con Experiments on Galvanic Cor Effect of Stirring and Temper Determination of Scaling Ter Books Introduction to Corrosion So 4419-0454-6 M.G. Fontana: Corrosion Eng

6.7 Academic writing and seminar

1.	Department proposing the course	Metallurgical Engineering
2.	Course Title	Academic Writing and Seminar
3.	L-T-P Structure	0-0-2
4.	Credits / # of period	1 / 20
5.	Course number (Code)	MM106601MM
6.	Status (Core/Elective) / Category	seminar
7.	Pre-requisites (course no./title)	None
8.	Course Objectives(CO) :	
	1. To introduce the academic wr	iting and develop the technical writing skills
	2. To familiarize the students wi	ith different word processors including MS-Word,
	Lyx and LaTeX	
	3. Improvising the presentation s	kills
9.	Course Content:	
	1. Advanced Features of MS-word for thesis writing	
	2. Introduction to Lyx	
	3. Introduction to LaTeX	
	4. Introduction to Mendeley	
	5. Introduction to Academic Writing: Style, Tone, Flow, Sequence, General to	
	Specific and Specific to General Writing, Data commentary	
	6. Presentation Skills	
10.	Text Book	
	1. Academic Writing: Essential	Tasks and Skills- Freaks and Swales
	2. Using Microsoft Word for writ	ting a Thesis: Hints and Tips by Prof. Martin Fahey
11.	Reference Books :-	
	1. Writing Your Thesis: Paul Oliver	

7th Semester Syllabus

Sl. No.	Subject	Subject Code	Category	
7.1	Materials Data Science and Informatics	MM107101MM	Core	
7.2	7.2.1 Introduction to Electrical, Magnetic and Optical Materials	MM107201MM	Program Elective (PE)	
	7.2.2 Energy Materials and Technologies	MM107202MM	× ,	
7.3	7.3.1 Additive Manufacturing of Materials	MM107203MM	Program Elective (PE)	
	7.3.2 Biomaterials	MM107204MM	(12)	
	7.4. 1 X-Ray Diffraction and TEM	MM107301MM	Open Elective	
7.4.	7.4.2 Materials Selection in Mechanical Design	MM107302MM	(OE)	
7.5	Materials Data Science and Informatics Lab	MM107401MM	Laboratory	
7.6	Project work	MM107501MM	Project	
7.7	Summer Internship -II	MM107701MM	Internship	

7.1 Materials Data Science and Informatics

1.	Department proposing the course	Metallurgical and Materials Engineering
2.	Course Title	Materials Data Science and Informatics
3.	L-T-P Structure	3-0-0
4.	Credits / # of period	3/ 30
5.	Course number (Code)	MM107101MM
6.	Status (Core/Elective) / Category	Core
7.	Pre-requisites (course no./title)	Basic programming, Maths, Physical Metallurgy
8.	Course Objectives(CO):	1
	1. To understand the history and cu	irrent trends in materials discovery and development.
	2. To introduce the wide variety	of topics under the umbrella of exploratory data
	analysis.	
	3. To learn how to explore new ma	aterials data sets, implement a comprehensive set of
	machine learning algorithms	from scratch and mines the new knowledge for
	accelerating the materials development activity.4. To learn how to solve materials and metallurgical problem through data analytics	
	data science.	
9.	Course Syllabus:	
	Unit 1	
	Introduction to data science, typ	es of data, variables and their types, scale of
	measurement, Examples with materials data. Materials data science and its needs industry and materials research perspective. Concept of materials informatics, Materials	
	Discovery and Development, History of Materials Development Cycles, Need for	
	accelerated materials development	nt and deployment. Materials Innovation and
	Ecosystem. Big Data.	
	Unit 2	
		gy and Components of Data Science, Getting and
	-	escriptive and Inferential Statistics, Event Space,
		othesis Testing Summarizing and Visualizing Data:
	Example with a material and metallu	urgical data.
	Unit 3	

	Univariate and Multivariate Exploratory Data Analysis. Feature extraction and feature		
	selection. Simple example with materials data. Model development using data, learning		
	algorithms: supervise, unsupervised and reinforcement learning, tools, and technique		
	Functional mapping, Classification, and pattern recognition, rule base model etc.		
	Unit 4		
	Data Pre-processing, Model Evaluation and Ensembles. stages of data science approach		
	of problem solving, Descriptive, diagnostic, predictive and prescriptive analytics of		
	materials data. Example with industrial and laboratory data. Structure-Property Linkages		
	using a Data Science Approach, exploring new materials space using data science		
	informatics.		
10.	Textbooks		
	5. Joel Grus, Data science from scratch, O'Reilly Media, USA, First edition, 2015		
	6. Krishna Rajan (Ed), Elsevier, Informatics for Materials Science and Engineering.		
	Data-driven Discovery for Accelerated Experimentation and Application,		
	Elsevier, First Edition, 2013.		
	7. Zacharias Voulgaris, Yunus E. Bulut, AI for Data Science, Prentice Hall Inc, New		
	Jersey, USA, 1995		
	8. Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of		
	Statistical Learning: Data Mining, Inference, and Prediction, Springer, Second		
	Edition, 2017.		
11.	Reference Books		
	1. Web resource: https://www.coursera.org/learn/material-informatics		
	2. Amit Konar, Computational Intelligence: principles, techniques and application,		
	Springer, NY, First Edition 2007.		
L			

7.2.1 Introduction to Electrical, Magnetic and Optical Materials (Program Elective)

1.	Department proposing the course	Metallurgical and Materials Engineering
2.	Course Title	Introduction to Electrical, Magnetic and
		Optical Materials
3.	L-T-P Structure	3-0-0
4.	Credits / # of period	3 / 30
5.	Course number (Code)	MM107201MM
6.	Status (Core/Elective) / Category	Program Elective
7.	Pre-requisites (course no./title)	None
8.	Course Objectives(CO) :	
	1. The objective of this course	is to provide students a fundamental understanding
	of electrical, magnetic and c	ptical properties of materials.
	2. To apply fundamentals f	for selecting materials for different engineering
	applications.	
	3. To understand developme	ent of new materials for different engineering
	applications.	
9.	Course Syllabus:	
	Unit-1	
	Electrical and Dielectric Materials	: Review of electrical conduction - resistivity and
	dielectric phenomena-concept of p	olarization - effects of composition, frequency and
	temperature on these properties-discussion on specific materials used as conducto (OFHC Copper, Al alloys, Fe-Si alloys, amorphous metals)-discussion on specifi materials used as dielectrics (ceramics and polymers)-dielectric loss, dielectric	
	breakdown - ferroelectricitypiezo and pyro electricity.	
	Unit-2	
	Magnetic Materials: Introduction to	o dia, para, ferri and ferro magnetism - hard and soft
	magnetic materials - iron- silicon al	lloys – iron, nickel alloys - ferrites and garnets - (Ag
	- Mn - Al) alloys-(Cu - Ni- Co) all	oy - fine particle magnets - applications of hard and
	soft magnetic materials-Giant magn	eto resistance- Nanomaterials.
	Unit-3	

Semiconducting and Superconducting Materials: Review of semiconducting materials - concept of doping-simple and compound semi-conductors - amorphous silicon, oxide semiconductors; amorphous semiconductors - FER, MOSFET and CMOS - Concept of supercondcutivity Production of Electronic Materials: Review of electronic materials - methods of crystal growth for bulk single crystals - zone melting-refining, leveling - synthesis of epitaxial films by VPE, PVD, MBE and MOCVD techniques - lithography; production of silicon - starting applications.

Unit-4

Optical Properties of Materials: Introduction to electromagnetic radiation, atomic and electronic interactions with electromagnetic radiation, optical properties of metals, optical properties of nonmetals, opacity and translucency in insulators, color of materials, applications of optical phenomena-luminescence, photoconductivity, lasers, optical fibers in communications.

10.	Text Books:-
	1. Pradeep Fulay, Electrical, magnetic, and Optical Materials, 1st edition, CRC press,
	2010
	2. C. Kittel, Introduction to Solid State Physics, 6th Edition, Wiley Eastern, New
	International Publishers, 1997
11.	Reference Books
	1. Raghavan V, Materials Science and Engineering, 4th Edition, Prentice Hall of India,
	1998.
	2. A. J. Dekker, Solid State Physics, MacMillan India, 1995

7.2.2	Energy Materials and	l Technologies (Program Elective)

1.	Department proposing the course	Metallurgical and Materials Engineering
2.	Course Title	Energy Materials and Technologies
3.	L-T-P Structure	3-0-0
4.	Credits / # of period	3/30
5.	Course number(Code)	MM107202MM
6.	Status (Core/Elective) / Category	Program Elective
7.	Pre-requisites (course no./title)	Physics of Metals
8.	Course Objectives(CO) :	
	1. To provide the fundamental k	nowledge for understanding concepts of different
	technologies based on electro	nic devices.
	2. To understand various manuf	acturing techniques for different energy materials.
	3. Understand materials selection	n for different applications as energy materials.
9.	Course Syllabus:	
	Unit-1	
	Relevance of renewable energy generation, conservation and harvesting vis-à-vis	
	environmental concerns (Energy requirement of society and depleting fossil fuels; Break-	
	up of various renewable energy sources and consumption patterns), Solar cell device	
	physics, LED device physics, Solar energy: amount of energy available area wise.	
	Unit-2	
	Available solar energy technologies, PV technologies, materials, processes and issu First generation technologies-Si based, Thin film (a-Si, CdTe, CIGS): So	
	concentrators, Third generation (hig	h efficiency and low cost)-Organic and dye solar
	cells, multi-junction, quantum dots	s: Present Status and future outlook and Indian
	Scenario.	
	Unit-3	
	Energy Efficient Lighting: Introduct	ion, Energy efficient buildings, role of sensors etc,
	Comparison of LEDs with conven	tional technologies, Principles of light emission;
	Optical processes and materials, Li	ght Emitting Diodes (LEDs): Introduction to p-n
	junction, hetero-junctions, recombin	ation processes, semiconductor materials (III-V,

	II-VI, SiC, ternary and quaternary alloys) for LEDs, metallurgical considerations		
	(crystal defects, lattice mismatch, optical losses, degradation), and fabrication		
	technology, OLED for lighting, Characterization Energy Conversion Devices:		
	Description of Operation, Configurations, Cell Components, Materials Requirements,		
	Manufacturing Techniques, Losses, Efficiency.		
	Unit-4		
	Solid Oxide Fuel Cells, Solid Oxide Electrolyzer Cells, Batteries, Capacitors, Energy		
	Harvesting Materials and Technologies: Working principles and case studies of with		
	emphasis on materials, their selection vis-à-vis their characteristics: Piezoelectric		
	Sensors, Actuators, Transducers and MEMS, Thermoelectrics, Applications: Ultrasound		
	Imaging, Pyroelectric Sensors IR imaging.		
10.	Text Books		
	1. Handbook of Photovoltaics Science and Technology, By Antonio Luque and		
	Steven Hegedus.		
	2. Physics of Solar Cells, By Jenny Nelson.		
	3. Physics of solar cells: from basic principles to advanced concepts, By Peter		
	Würfel and UliWürfel.		
11.	Reference Books		
	1. Organic photovoltaics: materials, device physics, and manufacturing		
	technologies, By Christoph J. Brabec, Vladimir Dyakonov, UllrichScherf.		
	2. Principles of Solar Cells, LEDs and Diodes: The Role of the PN Junction, By		
	Adrian Kitai.		
	3. Electroceramics: materials, properties, applications by A.J. Moulson and J.M.		
	Herbert Electroceramics-based MEMS: fabrication-technology and applications,		
	By Nava Setter.		

7.3.1 Additive Manufacturing of Materials (Program Elective)

	Department proposing the course	Metallurgical and Materials Engineering	
2.	Course Title	Additive Manufacturing of Materials	
3.	L-T-P Structure	3-0-0	
4.	Credits / # of period	3/ 30	
5.	Course number(Code)	MM107203MM	
6.	Status (Core/Elective) / Category	Program Elective	
7.	Pre-requisites (course no./title)	Polymer Ceramic and Composite material	
8.	Course Objectives (CO) :		
	1. To understand the different Additiv	ve Manufacturing processes	
	2. To enable selection of a suitable A	M process and materials for a particular	
	application		
	3. To learn the Additive Manufacturing defect and how to control them.		
	4. To understand the process-structure-property correlation of additively manufactured		
	product		
9.	Course Syllabus:		
	Unit 1		
		nting): Introduction, Process, Classifications	
	Additive Manufacturing (3D Prin		
	Additive Manufacturing (3D Prin Advantages, Additive v/s Conventiona		
	Additive Manufacturing (3D Prin Advantages, Additive v/s Conventiona	nting): Introduction, Process, Classifications al Manufacturing processes, Applications, CAD fo formats, Data translation, Data loss, STL format.	
	Additive Manufacturing (3D Prin Advantages, Additive v/s Conventiona Additive Manufacturing: CAD Data for Unit2	al Manufacturing processes, Applications, CAD fo	
	Additive Manufacturing (3D Prin Advantages, Additive v/s Conventiona Additive Manufacturing: CAD Data for Unit2 Materials: Polymers, Metals, Non-M	al Manufacturing processes, Applications, CAD fo formats, Data translation, Data loss, STL format.	
	Additive Manufacturing (3D Prin Advantages, Additive v/s Conventiona Additive Manufacturing: CAD Data for Unit2 Materials: Polymers, Metals, Non-W Preparation and their desired proper	Al Manufacturing processes, Applications, CAD fo formats, Data translation, Data loss, STL format. Metals, Ceramics, Composites etc, Raw materia ties, Support Materials; Additive Manufacturing	
	Additive Manufacturing (3D Prin Advantages, Additive v/s Conventiona Additive Manufacturing: CAD Data for Unit2 Materials: Polymers, Metals, Non-W Preparation and their desired proper	Al Manufacturing processes, Applications, CAD fo formats, Data translation, Data loss, STL format. Metals, Ceramics, Composites etc, Raw materia ties, Support Materials; Additive Manufacturing rocess parameter, Process Selection for variou	
	Additive Manufacturing (3D Prin Advantages, Additive v/s Conventional Additive Manufacturing: CAD Data for Unit2 Materials: Polymers, Metals, Non-M Preparation and their desired proper Equipment and tooling; Process: Prin	Al Manufacturing processes, Applications, CAD for formats, Data translation, Data loss, STL format. Metals, Ceramics, Composites etc, Raw materia ties, Support Materials; Additive Manufacturing rocess parameter, Process Selection for variou	
	Additive Manufacturing (3D Prin Advantages, Additive v/s Conventional Additive Manufacturing: CAD Data for Unit2 Materials: Polymers, Metals, Non-M Preparation and their desired proper Equipment and tooling; Process: Prin applications. Various forms of raw material Unit3	Al Manufacturing processes, Applications, CAD for formats, Data translation, Data loss, STL format. Metals, Ceramics, Composites etc, Raw materia ties, Support Materials; Additive Manufacturing rocess parameter, Process Selection for variou	
	Additive Manufacturing (3D Prin Advantages, Additive v/s Conventional Additive Manufacturing: CAD Data for Unit2 Materials: Polymers, Metals, Non-M Preparation and their desired proper Equipment and tooling; Process: Prin applications. Various forms of raw material Unit3 Additive Manufacturing Techniques:	Al Manufacturing processes, Applications, CAD for formats, Data translation, Data loss, STL format. Metals, Ceramics, Composites etc, Raw materia ties, Support Materials; Additive Manufacturin, rocess parameter, Process Selection for variou aterial- Liquid, Solid, Wire, Powder	

Unit 4

Post Processing: Requirement and Techniques; Defects, Product Quality, Application Domains: Aerospace, Electronics, Health Care, Defence, Automotive, Construction, Food Processing, etc.

10. Text Books

1. Additive Manufacturing Technologies by by Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani, Springer, 3rd ed. 2021

11. Reference Books

1. Additive Manufacturing: Foundation Knowledge For The Beginners by Sunpreet Singh, Chander Prakash, Seeram Ramakrishna, World Scientific, 2020

2. Additive Manufacturing Applications for Metals and Composites, by K.R. Balasubramanian (Editor), V. Senthilkumar (Editor), Engineering Science Reference, 2020

3. Fabricated: The New World of 3D Printing by Hod Lipson and Melba Kurman, Design and Modeling for 3D Printing by Matthew Griffin

7.3.2 Biomaterials (Program Elective)

1.	Department proposing the course	Metallurgical and Materials Engineering	
2.	Course Title	Biomaterials	
3.	L-T-P Structure	3-0-0	
4.	Credits / # of period	3/30	
5.	Course number(Code)	MM107204MM	
6.	Status (Core/Elective) / Category	Program Elective	
7.	Pre-requisites (course no./title)	Polymer, Ceramic and Composite Materials	
8.	Course Objectives(CO) :		
	1. Understand the concept and sig	nificance of Biomaterials.	
	2. Understand selection of biomat	erials for a particular application.	
	3. Understand mechanical propert	ies of biomaterials.	
	4. Understand biocompatibility of	the materials for the intended application.	
9.	Course Syllabus:		
	Unit-1		
	Definition and requirements of biomaterials, properties of some standard biomaterials		
	Importance of Biomaterials. Interactions of materials with the human body.		
	Classification of Biomaterials, Metallic implant materials: Stainless steel, Co-based alloys, Ti and Ti-based alloys. Composite materials and applications.		
	Unit-2		
	Polymeric implant materials: Polyolefin's, polyamides, acrylic polymers, silicone,		
	rubbers, acetyls. (Based on thermo sets, thermoplastics and elastomers). Hydrophilic and		
	hydrophobic surface properties of polymeric biomaterials. Biodegradable polymers for		
	medical purposes, Biopolymers in controlled release systems. Criteria for selection of		
	biomaterials for specific medical applic	cations.	
	Unit-3		
	-	of bio ceramics. Common types of bio ceramics:	
		arbons. Bio resorbable and bioactive ceramics.	
	-	low fracture toughness. Host tissue reactions:	
	importance of interfacial tissue reaction	n (e.g. ceramic/bone tissue reaction).	
	Unit-4		

	Concepts of Biocompatibility, Cell material interaction – types of materials - toxic, inert,	
	bioactive - long term effects of materials within the body and cell response. Corrosion	
	and biodegradation, simulated body fluids and their effect on biodegradation.	
	Engineering biomaterials for tissue engineering. Orthopedic implants, dental materials,	
	vascular grafts, ocular materials, drug delivery carriers, introduction to tissue	
	regeneration scaffolds.	
10.	Text Books	
	1. Biomaterials Science: An Introduction to Materials in Medicine, 3rd Edition, Buddy	
	D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack E. Lemons, 2013, Academic	
	press, UK.	
	2. Biomaterials- An Introduction by Park Joon & R.S. Lakes.	
11.	Reference Books	
	1. Fundamentals of Biomaterials by Vasif Hasirci, Nesrin Hasirci,, Springer	

1.	Department proposing the course	Metallurgical and Materials Engineering
2.	Course Title	X-Ray Diffraction and TEM
3.	L-T-P Structure	3-1-0
4.	Credits / # of period	3 / 30
5.	Course number(Code)	MM107301MM
6.	Status (Core/Elective) / Category	Open Elective
7.	Pre-requisites (course no./title)	Materials Characterization
8.	Course Objectives(CO) :	
	1. Understand the basic the	ory of X-ray diffraction for crystal structure
	determination and its practica	l application to real problems.
	2. Understand diffraction technic	iques for identification of phases and estimation
	of their chemical composition	on, microstructures, and crystal structures.
	3. Calculate the residual stress a	nd macro texture of materials
	4. Understand working principl	es of TEM for microstructural and compositional
	analysis of materials.	
9.	Course Syllabus:	
	Unit-1	
	Introduction to crystallography, Sym	metry – point group and space group, space group
	tables etc, Pole figures (Stereograph	ic projection and their applications), Formation of
	selected area diffraction patterns, r	eciprocal lattice and Ewald sphere construction,
	kikuchi lines.	
	Unit-2	
	X-ray diffraction and analysis: Produ	action and properties of X-rays, X-rays absorption,
	filter and detectors. Bragg's law, D	iffraction Methods, Structure factor and intensity
	calculations.	
	Unit-3	
	Determination of crystal structure, so	urces of error in measurements. Chemical Analysis
	by X-ray techniques, Effect of text	ure, grain size, plastic deformation, micro strain,
	residual stresses etc on diffraction lin	es.
	Unit-4	

7.4.1 X-Ray Diffraction and TEM (Open Elective)

	TEM: Principle and operation, sample preparation techniques, detectors and imaging
	modes, Introduction to HRTEM, diffraction patterns, Indexing of selected area
	diffraction patterns.
10.	Text Books
	1. B.D. Cullity, Elements of X-ray Diffraction by (II edition), Addison-Wesley
	Publishing Co Inc., Reading, USA, 1978
	2. P.J. Goodhew and F.J. Humphreys, Electron Microscopy and Analysis by Taylor
	and Francis, London, 2001(ISBN-0-7484-0968-8).
11.	Reference Books
	1. S.H. Cohen and M.L. Lightbody, Atomic Force Microscopy / Scanning Tunneling
	Microscopy, (Editors), Plenum Press, New York, 1994.
	2. P.J. Haines (Editor), Principles of Thermal Analysis and Calorimetry by Royal
	Society of Chemistry (RSC), Cambridge, 2002.

7.4.2 Materials Selection in Mechanical Design (Open Elective)

	Department proposing the course	Metallurgical and Materials Engineering			
2.	Course Title	Materials Selection in Mechanical Design			
3.	L-T-P Structure	3-0-0			
4.	Credits / # of period	3/ 30			
5.	Course number (Code)	MM107302MM			
6.	Status (Core/Elective) / Category	Open Elective			
7.	Pre-requisites (course no./title)	Physical Metallurgy, Mechanical Behaviour of			
		Materials			
8.	Course Objectives(CO) :				
	1. Develop an understanding of	the relationship between design parameters and			
	materials properties.				
	2. Gain understanding on how prop	perties are influenced by processing, fabrication and			
	service conditions and how to i	ntegrate materials selection in a range of modern			
	engineering applications.				
	3. Selection of materials for Specifi	ic engineering applications and processes.			
9.	Course Syllabus:				
	Unit 1				
	Introduction Evolution of Engineerin	g materials. Overview: Technologically importan			
	properties of materials, Introduction	n to Material Property Charts Material property			
	charts: Modulus - density, strength-	density, fracture toughness-strength, Rationalizing			
	and Critical Assessment of Material	Properties, Basics of Design- Design Process and			
	Types, Materials Information for des	ign, oriented Materials Selection.			
	Unit 2				
	Selecting Materials and Shape: The	e Selection strategy, Materials Indices, Selection			
	procedure, -Case studies on Material	ls selection (Materials for Fly wheel, Spring, hea			
	exchanger etc.), Shape factors, Micro	oscopic and Micro structural shape factors – limit to			
		oscopic and Micro structural shape factors – limit to ructural sections and material indices, Material			

Unit 3

	Service, Fabrication and economic requirements for the components – Methodology for
	selection of materials, Multiple Constraints and Objectives: Introduction, Selection with
	multiple constraint, conflicting objectives, case studies multiple constraint: Light
	pressure vessel, connecting rod for high performance engine, Case studies on conflictive
	objective: Materials for Disk Break calliper.
	Unit 4
	Process and their effect on Properties: Introduction, classifying processes, the processes:
	shaping, joining, finishing, Processing for Properties, Systematic Process Selection and
	cost, Selection charts - Ranking of processes, case studies - Influence of manufacturing
	aspects and processing route on properties of materials and its influence on selection of
	materials. process selection: strategy case studies on process selection: Casting an
	aluminium connecting rod, forming a fan, Joining a Steel Radiator etc.
10.	Text Books
	1. M.F. Ashby, Materials Selection in Mechanical Design-Fourth edition, Elsevier
	Butterworth Heinemann, 2011
	2. Materials and Design. The Art and Science of Material Selection in Product
	Design-Michael F. Ashby and Kara Johnson (Auth.) -Butterworth Heinemann
	(2014)
	3. Gladius Lewis, Selection of Engineering Materials, Prentice Hall Inc, New
	Jersey, USA, 1995
11.	Reference Books
	1. Charles.J.A. and Crane,F.A.A., Selection and Use of Engineering Materials,
	Butterworths, London, UK, 1989.
	2. P. L. Mangonon, The Principles of Materials Selection and Design, Prentice Hall
	International, Inc. 1999.

7.5 Materials Data Science and Informatics Lab

1.	Department proposing the course	Metallurgical and Materials Engineering		
2.	Course Title	Materials Data Science and Informatics		
		Lab		
3.	L-T-P Structure	3-0-0		
4.	Credits / # of period	1 / 20		
5.	Course number (Code)	MM107401MM		
6.	Status (Core/Elective) / Category	Core		
7.	Pre-requisites (course no./title)	Materials Data Science and Informatics		
8.	Course Objectives (CO):			
	5. To learn python programming langu	age for data science and visualization.		
	6. Hand on experience with material da	ata and data science.		
	7. To how to solve the critical materia	als/metallurgical problems using data science		
	approach.			
	8. To expose the students with hand	on experience in solving industry problem		
	analysing industrial data			
9.	Laboratory assignments:			
	1. Computational thinking and data set	ience application with Python programming		
	2. Study the periodic table as materials	s data.		
	3. Diagnostic analysis of sinter plan	data/blast furnace operation data/continuous		
		of sinters/pig iron/CC steel bar using a sample		
	industrial data set.			
		Or		
		AI tool/process structure property corelation		
	study.			
	4. Prescriptive analysis of an alloying	data base to prescribe the rule for alloying.		
		Or		
	Automatic recognition microstructu			
		MG/perovskite database in search of new		
	materials by material informatics ap	-		
	Allow design by analyzing of data and	Or		
	Alloy design by analysis of data set	using hydrid Ai technologies		

10.	Textbooks
	1. Laboratory manual
	2. Ashok NamdevKamthane and Amit Ashok Kamthane, Programming and
	problem solving with Python, Second Reprint, McGraw Hill education (India)
	Private Limited, 2018.
11.	Reference Books
	1. Joel Grus, Data science from scratch, O'Reilly Media, USA, First edition, 2015
	2. Zacharias Voulgaris, Yunus E. Bulut, AI for Data Science, Prentice Hall Inc, New
	Jersey, USA, 1995

7.6 **Project work**

1.	Department proposing the course	Metallurgical and Materials Engineering
2.	Course Title	Project work
3.	L-T-P Structure	0-0-8
4.	Credits	4
5.	Course number(Code)	MM107501MM
6.	Status (Core/Elective)	Project
7.	Pre-requisites (course no./title)	

7.7 Summer Internship - II

1.	Department proposing the course	Metallurgical and Materials Engineering
2.	Course Title	Summer Internship – II
3.	L-T-P Structure	
4.	Credits	2
5.	Course number(Code)	MM107701MM
6.	Status (Core/Elective)	Internship
7.	Pre-requisites (course no./title)	

8th Semester Syllabus

Sl.	Subject	Subject code	Category
No.			
0.1	8.1.1 Materials Modeling and Simulation	MM108201MM	Program
8.1	8.1.2 Nuclear Materials	MM108202MM	Elective (PE)
	8.1.3 Grain Boundary Engineering	MM108203MM	-
	8.2.1 High Temperature Materials	MM108204MM	Program Elective (PE)
8.2	8.2.2 Metallurgical Waste Management	MM108205MM	
	8.2.3 Furnace Technology	MM108206MM	
	8.3.1 Advanced Materials	MM108301MM	Open Elective
8.3	8.3.2 Science and Technology of Nano Materials	MM108302MM	(OE)
8.4	8.4.1 Automotive Engineering	MM108303MM	Open Elective
0.4	8.4.2 Engineering Economics	MM108304MM	(OE)

Scheme (Eighth Semester for Students undergoing Major Internship)

Sl. No.	Course Title	L	Т	Р	Credits
1.	Open Elective (0XX4)	3	0	0	3
2.	Open Elective (0XX5)	3	0	0	3
3.	Major Internship				6 (4 [^] +2 [^])
	Total Credits				12

[^]*Mid-semester evaluation report and field evaluation report to be submitted by industry* [^]*Report submission and presentation in the department*

8.1.1	Materials Modelling and Simulation
0.1.1	materials modeling and Simulation

1.	Department proposing the course	Metallurgical and Materials Engineering		
2.	Course Title	Materials Modelling and Simulation		
3.	L-T-P Structure	3-0-0		
4.	Credits / # of period	3/ 30		
5.	Course number (Code)	MM108201MM		
6.	Status (Core/Elective)	Program Elective		
7.	Pre-requisites (course no./title)	Engineering Maths I,II and III, Physical		
		Metallurgy, Heat Treatment and Phase		
		Transformation.		
8.	Course Objectives (CO):			
	1. To gains knowledge about fund	damentals of Modelling techniques.		
	2. To gains Knowledge about Sin	nulation methods.		
	3. To apply the knowledge of modelling and simulation to various structural materials.			
9.	Course Syllabus:			
	Unit 1			
	General introduction to materials modelling, Role of materials modelling in connection			
	to experiment and theory, Concept of length and time scale, Classification of materials			
	modelling, General aspects of materials modelling, steps in construction of a model.			
	Unit 2			
	Concept of Inter atomic potentials, the	he cohesive energy, pair potentials, ionic materials,		
		on to molecular dynamics, equation of motion,		
		n to thermodynamics, reliability of simulations,		
	application in material research and e	examples.		
	Unit 3			
	Metropolis Monte-Carlo algorithm,	Ising model, Q-state Potts Model for mesoscale		
		nte-Carlo for simulation of grain growth, re-		
		r automata, example in two-dimension, application		
		earch, Phase field modelling, basic principles, one		

	dimension phase filled transformation, application and example of phase field modelling			
	in grain growth and microstructure simulation in polycrystalline materials. Basics of			
	FEM modelling and its application in heat flow problem, mass flow problem with			
	metallurgical application.			
	Unit 4			
	Concept of physical and empirical mathematical modelling, modelling of phase diagram,			
	solidification fonts, phenomenological/constitutive modelling microstructure to			
	properties, data driven modelling, Engineering optimization and its applications in			
	materials modelling and simulation. of material processes, properties and phenomena.			
10.	Textbooks			
	1. Richard Lesar, Introduction to Computational Materials Science MRS,			
	Cambridge University Press, UK, Reprint 2014.			
	2. Dierk Raabe, Computational Materials Science, Wiley VCH Verlag GmbH,			
	1998			
	3. Introduction to materials Modelling, Edited by Zoe. H. Barber, Maney			
	Publishing for the Institute of Materials, Minerals and mining, London 2005.			
	4. K. Dev, Optimization for Engineering Design, algorithms and examples, PHI,			
	Sixth Edition, 1995.			
11.	Reference Books			
	1. Z. Xiao Guo (Ed.), Multiscale Materials Modelling: Fundamental and			
	Applications. Woodhead Publishing Limited, Cambridge, 2007			
	 J. S. Szekely, J.W. Evans and J.K. Brimakombe: The Mathematical and Physical 			
	Modelling of Primary Metals Processing Operations, Wiley.			
	 D. Mazumdar and J.W. Evans: Modelling of Steel Making Processes, CRC. 			
	2. 2. Hazandar ald tree zealst froughing of Stort fraking (1000500, ORO.			

8.1.2 Nuclear Materials

1.	Department proposing the course	Metallurgical Engineering		
2.	Course Title	Nuclear Materials		
3.	L-T-P Structure	3-0-0		
4.	Credits / # of period	3/ 30		
5.	Course number(Code)	MM108202MM		
6.	Status (Core/Elective)	Program Elective		
7.	Pre-requisites (course no./title)	None		
8.	Course Objectives(CO) :			
	1. To explain the basics of Nuclear technol	logy		
	2. To understand relevance of metallurgy t	o nuclear reactors.		
	3. To gain a working knowledge of extraction of nuclear metals like Uranium, Thorium,			
	and Beryllium.			
9.	Course Syllabus:			
	Unit-1			
	Elementary Nuclear Physics and Chemistry: Structures of nucleus, radioactivity,			
	bending energy: nuclear interaction; fission and fusion: nuclear reaction; energy release			
	and chain reactions; neutron cross-section; multiplication and criticality concepts and			
	factors. Mechanisms of moderation, radiation detection, radiation effects on fissile and			
	non-fissile materials; radiation damage and radiation growth; thermal cycling;			
	protection against radiations.			
	Unit-2			
	Types of reactors and classification. Considerations in selection and properties of			
	common materials used as fuels, their physical and chemical properties; canning			
	materials; coolants; control rods; reflectors and shielding materials.			
	Unit-3			
	Occurrence and general characteristics of nuclear minerals. Flow sheets of processing			
	of nuclear minerals for the production of nuclear grade uranium, thorium, beryllium and			
	zirconium with emphasis on basic scientific principles involved. Production and			
	enrichment of uranium, Fabrication fuel elements. Irradiated fuel processing for			
	recovery of Plutonium. Nuclear power production in India and its economics.			
	Unit-4	Unit-4		

	Uranium: Acid and alkali processes for digestion of uranium ores, purification of crude	
	salt, production of reactor grade UO2 and uranium. Thorium: Flow sheets, Acid and alkali	
	processes for digestion of thorium ores, purification and production. Zirconium: Flow	
	sheets, Acid and alkali processes for digestion of zirconium ores, purification and	
	production.	
10.	Text Books	
	1. Metallurgy in Nuclear Power Technology: Wright JC, Iliffe Book Ltd., 1962	
	2. Nuclear Reactor Metallurgy: Wilkinson WD and Murphy WF, Van Nostrand, 1958	
	3. Symposium on Rare Materials: Indian Institute of Metals.	
	4. Principles of Nuclear Reactor Engineering: Glasstone S and Snesonske A Macmillan,	
	London.	
11.	Reference Books	
	1. Uranium and Thorium: Grainger L; George Newnes Ltd., London.	
	2. Nulcears Fuels: Gurinsky DH and Dienes JL; Macmillan.	
	3. Reactor Hand book Material; US Atomic Energy Commission, McGraw Hill	
	Book Co. 1955	
	4. Proceedings of the symposium on Nuclear Science and Engineering – Bhabha	
	Atomic Research Centre, Bombay.	

8.1.3 Grain Boundary Engineering

1.	Department proposing the course	Metallurgical Engineering	
2.	Course Title	Grain Boundary Engineering	
3.	L-T-P Structure	3-0-0	
4.	Credits / # of period	3/30	
5.	Course number(Code)	MM108203MM	
6.	Status (Core/Elective)	Program Elective	
7.	Pre-requisites (course no./title)	Physical Metallurgy, Mechanical Behavior	
		of Materials	
8.	Course Objectives(CO) :		
	1. To understand the effect of grain	boundary on material properties.	
	2. Knowledge of interface representation	ation and analysis .	
	3. Application of existing knowledge	e to tailor interface in new material.	
	4. Idea of grain boundary structure a	nd its implication in engineering properties.	
9.	Course Syllabus:		
	Unit-1		
	Introduction to interfaces: basic classification and definitions, Basics of energetics:		
	definitions and relations to physical properties, Solid-Vapour interfaces, Solid-Liquid		
	Interfaces, Solid-Solid Interfaces		
	Unit-2		
	Grain boundary structure and energy, Ty	pes of grain boundaries and dislocation models,	
		in Boundary Segregation, Grain boundary and	
	twin boundary equilibria, CSL boundary	(Coincidence site lattice, like sigma 3, sigma	
	5 etc).		
	Unit-3		
	Hetero-phase Interfaces, Interphase boun	ero-phase Interfaces, Interphase boundaries, Coherent and semi coherent interphase	
	boundaries, Roughening and Phase transf	formations on interphase boundaries, Interfaces	
	between differences materials and structu	ares, Role of interfaces in conduction in metals	
	and ceramics		

Unit-4

Effect of interfaces in mechanical properties, High temperature behaviour, sliding and migration, Fracture of metals/alloys: surface embrittlement, grain boundary embrittlement, interface strengthening, Interfaces and Functional Behaviour: Case Studies

10.	Text Books	
	1. Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid	
		Vapor, Solid-Liquid and Solid-Solid Interfaces, James M. Howe, Wiley-Inter
		science.
	2.	The Role of the Coincidence Site Lattice in Grain Boundary Engineering, Valerie
		Randle.
	3.	Physics and chemistry of interfaces By Hans-Jürgen Butt, Karlheinz Graf, Michael
		Kappl, Wiley-VCH.
	4.	Physics of surfaces and interfaces, H. Ibach, Springer.
11.	Reference Books	
	1.	Solid surfaces, interfaces and thin films, Hans Lüth, Springer.
	2.	Physical Chemistry of Surfaces, Arthur W. Adamson, Wiley-Interscience
	3.	Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications,
		Second Edition, Günter Gottstein and Lasar S. Shvindlerman
	4.	Recrystallization and Related Annealing Phenomena by F.J. Humphreys, M.
		Hatherly

8.2.1 High Temperature Materials

1.	Department proposing the course	Metallurgical Engineering
2.	Course Title	High Temperature Materials
3.	L-T-P Structure	3-0-0
4.	Credits / # of period	3/ 30
5.	Course number(Code)	MM108204MM
6.	Status (Core/Elective)	Program Elective
7.	Pre-requisites (course no./title)	Corrosion Engineering
8.	Course Objectives (CO) :	
	1. To learn and design material's	microstructure for high temperature applications.
	2. To learn scientific issues related	d to high temperature such as creep, oxidation and
	materials degradation.	
	3. To understand fracture behavior at high temperature.	
9.	Course Syllabus:	
	Unit-1	
	Oxidation, high temperature corrosion, erosion, Super alloys, Ceramics and polymers for	
	high temperature applications, Intermetallics, Usage of spring steels, evaluation of	
	property data extrapolation. Factors influencing functional life of components at elevated	
	temperatures, definition of creep curve, various stages of creep, metallurgical	
	influencing various stages, effect of stress, temperature and strain rate.Unit-2Design of transient creep, time hardening, strain hardening, expressions for rupture	
for creep, ductile and brittle materials, Monkman - Grant relationship		Monkman - Grant relationship Various types of
	fracture, brittle to ductile transition, cle	avage, ductile fracture, fracture maps for different
	alloys and oxides.	
	Unit-3	
	Oxidation, Pilling-Bedworth ratio, kine	etic laws of oxidation - defect structure and control
	of oxidation by alloy additions - sulph	ation, hot gas corrosion deposit, modified hot gas
	corrosion, effect of alloying elements of	on hot corrosion.
	Unit-4	

	Iron base, nickel base and cobalt base superalloys, composition control, solid solution
	strengthening, precipitation hardening by gamma prime, grain boundary strengthening,
	TCP phase - embrittlement.
10.	Text Book
	1. J.R. Davis, ASM Specialty Handbook: Heat- resistant materials, ASM, 1997
11.	Reference Book
	1. Evans, R.W and Wilshire, B. Creep of metals and alloys. Institute of metals, 1985,
	London.

8.2.2 Metallurgical Waste Management

1.	Department proposing the course	Metallurgical Engineering
2.	Course Title	Metallurgical Waste Management
3.	L-T-P Structure	3-0-0
4.	Credits / # of period	3/30
5.	Course number(Code)	MM108205MM
6.	Status (Core/Elective)	Program Elective
7.	Pre-requisites (course no./title)	None
8.	 manufacturing, finishing opera Classify the wastes produced from hydrometallurgical processing e Utilization of waste produced of suitable methods to recycle the metals. 	om iron making, steel making, plasma processing,
9.	Course Syllabus: Unit-1 Environmental and health impacts of Mining and Metallurgical waste. Various kind of wastes: Mining and Beneficiation waste production. Ferrous metal waste production. Ferroalloys waste production. Hydrometallurgical waste production. Metal manufacturing and finishing waste production. Postconsumer Waste production. E-waste and recovery of metals and useful things from e-waste. Unit-2 Utilization of mine overburden and waste rock. Potential utilization of mineral beneficiation tailings. Prevention and mitigation of acid mine drainage. Recycling and reuse of blast furnace ironmaking slags, steel making dusts and sludges. Utilization of steel making dusts – Plasma based processing, hydrometallurgical processing,	

Unit-3

Recycling and reuse of steelmaking slags Utilization of Jarosite, goethite produced during extraction of zinc, Utilization of red mud produced in Bayer process: metallurgical utilization through metal recovery, utilization in building and construction, Glass-ceramics and Pigments. Recycling and utilization of surface oxide scale produced during metal forming operation. Metal recovery from pickling and plating sludges.

Unit-4

Waste management and utilization options: zero waste process approach, synergy between residue produces and residue end users. Process integration to mineral waste utilization. Process intensification.

10. Text Book

1. Ndlovu, S., G.S. Simate and E. Matinde, Waste production and utilization in the Metal Extraction Industry, CRC Press, 2017.

11. Reference Book

- 1. Ramachandra Rao, Resource recovery and recycling from metallurgical wastes, Elsevier, 2006.
- 2. K. Hieronymi, R. Kahhat, E. Williams, E-waste Management: From waste to resource, Routledge, New York, 2013.

8.2.3 Furnace Technology

1.	Department proposing the course	Metallurgical Engineering
2.	Course Title	Furnace Technology
3.	L-T-P Structure	3-0-0
4.	Credits / # of period	3/ 30
5.	Course number(Code)	MM108206MM
6.	Status (Core/Elective)	Program Elective
7.	Pre-requisites (course no./title)	None
8.	Course Objectives (CO) :	
	1. To apply various methods of he	eat transfer and solve problems.
	2. To apply /select a suitable pyro	meter for high temperature measurements
	under various conditions.	
	3. To have knowledge about vario	ous furnaces and their applications.
9.	Course Syllabus:	
	Unit- 1	
	Steady State Heat Transfer: Importance of heat transfer, conduction through plane,	
	cylindrical, spherical and compound walls, shape factor and effect of variable thermal	
	conductivity. Unsteady state conduction: Thermal diffusivity equation for uni-	
	directional heat flow. Sudden change of surface temperature of a thick plane wall,	
	cylinder and sphere. Graphical Solutions.	
	Unit - 2	
	Furnaces: Blast furnace Characteristic features of vertical shaft furnaces, reverberator furnaces, Electric Arc and Induction furnaces. Tube and muffle type resistanc furnaces, continuous furnaces. Sources of heat losses in furnaces and hea balance.Acid, basic and neutral refractories, their composition and properties; Method of production of fire clay, silica, magnesite, chrome- magnesite, dolomite an	
	insulation bricks; special refractories;. Testing of Refractories, Factors deciding the	
	choice of refractory for a particular fur	nace and its parts.
	Unit - 3	
	Pyrometry: Thermo electric pyromete	r- Peltier and Thomas e.m.fs. Thermo-electric
	power of thermocouples. Required properties of thermocouples. Noble and base me	
L		

	thermocouples. Thermopile. Measurement of e.m.f by Milli-voltmeters and	
	potentiometers. Cold junction correction. Resistance thermometers - Calendars	
	correction. Principle, construction of resistance thermometers. Measurement of	
	resistance compensation for connection wires.	
	Unit -4	
	Fuels for furnace: Metallurgical coke, manufacture, specifications, testing and	
	properties; Coking and Non-coking coals; Coke Oven Gas, Blast Furnace Gas and	
	natural Gas. Factors affecting the choice of fuels.	
10.	Text Book	
	1. Elements of heat transfer- Jakob and Hawikns.	
	2. Pyrometry – W.P. wood and J. M. Corck	
	3. Metallurgical furnaces- Krivadin and Markov.	
	. Rashid Chesti, Refractories. Prenticae- Hall of India private ltd.	
11.	Reference Book	
	1. Furnaces-J. D. Gilchrist, First edition, Published by Pergamon press.	
	2. Elements of thermodynamicsand heat transfer- Obert and Young.	
	3. Control systems and Instrumentation – S. Bhasker.	
	4. Norton, Fo H. Refractories, McGraw-Hill, N.Y. 1958	
	5. Butt A Metallurgical problems McGraw-Hill, Book Company London	
	194Efficient use of fuels, HMSO London 1953	

8.3.1 Advanced Materials

1.	Department proposing the course	Metallurgical Engineering	
2.	Course Title	Advanced Materials	
3.	L-T-P Structure	3-0-0	
4.	Credits / # of period	3 / 30	
5.	Course number(Code)	MM108301MM	
6.	Status (Core/Elective)	Open Elective	
7.	Pre-requisites (course no./title)	Mechanical Behaviour of Materials,	
		Physics of Materials	
8.	Course Objectives(CO) :		
	1. Introducing recent developmen	ts in Engineering materials.	
	2. Realize how material structure	is engineered for specific application.	
	3. Select appropriate materials for specific engineering applications.		
9.	Course Syllabus:		
	Unit 1		
	Piezoelectric materials (PZT): Piezoelectric effect, Dielectric hysteresis, piezoelectric		
	constants, PZT transducers, piezoelectric materials and manufacturing techniques		
	(stability, poling and depolarisation) etc, Multiferroic materials.		
	Unit 2		
	Shape memory alloys (SMA): Shape memory effect and the metallurgical phenomenon		
	of SMA, Temperature assisted shape memory effect, visco-elastic behaviour, magnetic		
	shape memory effect. Micro-electro-mechanical (MEMS) systems: Introduction, silicon		
	wafers and other materials for MEMS applications, manufacturing techniques.		
	Unit 3		
	Mechanically alloyed oxide dispersion strengthened superalloys, Functionally Gradient		
	Material (FGM), Thermal barrier coating for aero engines and gas turbines.		
	Material (FGM). Thermal barrier coating	ng for aero engines and gas furbines.	

	Unit 4	
	Cellular materials (metals, ceramic, polymers, lattice), Metamaterials, Quasicrystallin alloys and their composites, Bulk Metallic glasses, High Entropy Alloys.	
10.	Text Books:-	
	 An Introduction to Materials Science and Engineering, W. D. Callister, John Wiley & Sons (2007) 	
	2. Materials Science and Engineering, V. Raghavan, PHI, 2004.	
	3. Functional Materials Editors: S. Banerjee A.K. Tyagi, Elsevier, 2011	
11.	Reference Books :-	
	1. Cellular Solids: Structure and Properties, Gibson, L., & Ashby, M.Cambridge	
	University Press. doi:10.1017/CBO9781139878326	
	2. Bulk Metallic Glasses, by C. Suryanarayana and A. Inoue, second edition, CRC	
	Press.	
	3. High-Entropy Alloys, by <u>B. S. Murty</u> , <u>Jien-Wei Yeh</u> , <u>S. Ranganathan</u> , Butterworth-	
	Heinemann; 1st edition .	
	4. Superalloys-II edited by C.T. SIMS, N.S. Stoloff and W.C.Hagel A Wiley-	
	Interscience publication John wiley and sons, New York, 1972.	
	 Functional Materials: Properties, Performance and Evaluation by 	
	EwaKlodzinska(Editor), CRC Press.	
	EwaRiouziliska(Eulior), CRC F1655.	

8.3.2 Science and Technology of Nano Materials

1.	Department proposing the course	Metallurgical Engineering
2.	Course Title	Science and Technology of Nano Materials
3.	L-T-P Structure	3-0-0
4.	Credits / # of period	3 / 30
5.	Course number(Code)	MM108302MM
6.	Status (Core/Elective)	Open Elective
7.	Pre-requisites (course no./title)	
8.	Course Objectives(CO) :	
	1. To Introduce concepts of nanc various propertied of materials.	o science and technology for improvement in
	2. This course intends to introdu techniques.	ce synthesis of nano materials by different
	3. To understand various characterization techniques for nano-materials and it engineering application.	
9.	Course Syllabus:	
	Unit-1	
	Basics of Nano science - Introduction to nano science and technology, history, definition,	
	classification of nanomaterials based on origin, dimension - Unique properties of	
	nanomaterials - mechanical, magnetic, thermal, optical and electrical properties	
	Unit-2	
	Introduction and preparation of thin film: Difference between thin and thick film. Thin film Growth mechanism. Deposition technology: Thermal and ultrasound decomposition methods. Reduction methods. Coprecipitation, spray drying, sol-gel and hydrothermal methods. Capped semiconductor nanoparticles. High energy ball milling and mechanical attrition. Thermal evaporation. Sputtering. Laser ablation. Chemical vapor deposition. Molecular beam epitaxy. Thermal spraying. Electro and electroless deposition., vacuum technology: Vacuum pumps & pressure gauges. Defects in thin film: General concepts, nature of defect, microscopic defect, and dislocation. Boundary defects. Defect and energy states - donor acceptor levels, trap and recombination centers, excitons, phonons. Unit-3	

Structural studies: GIXRD and electron diffraction. Surface studies: electron microscopy				
studies (FESEM, HRTEM), Scanning probe microscopy (STM, AFM), X-ray				
photoelectron spectroscopy (XPS), Rutherford Back Scattering spectroscopy (RBS) and				
Secondary Ion Mass Spectroscopy (SIMS). Properties of thin film: Optical behaviors:				
transmission, reflection, refractive index, photoconductivity, and photoluminescence (PL				
spectra).				

Unit-4

Electrical behaviors: sheet resistivity, electron mobility and concentration, Hall effect. Mechanical behaviors: stress, adhesion, hardness, stiffness. Applications of thin films in various fields: Antireflection coating, FET, TFT, resistor, thermistor, capacitor, solar cell, and MEMs fabrication of silicon wafer: Introduction. preparation of the silicon wafer media, silicon wafer processing steps.

10.	Text Books:-	
	1. Introduction to Nanoscience And Nanotechnology by K. K. Chattopadhyay, A. N.	
	Banerjee.	

11. Reference Books :-

- 1. Materials Science of Thin Films by Milton Ohring.
- Thin Film Materials: Stress, Defect Formation and Surface Evolution by L. B. Freund, S. Suresh.
- 3. Thin-Film Deposition: Principles and Practice by **Donald Smith**.
- Nanomaterials and Nanochemistry by Editors: C. Bréchignac, P. Houdy, M. Lahmani, (Eds.)

8.4.1 Automotive Materials

1.	Department proposing the course	Metallurgical Engineering	
2.	Course Title	Automotive Materials	
3.	L-T-P Structure	3-0-0	
4.	Credits / # of period	3/ 30	
5.	Course number(Code)	MM108303MM	
6.	Status (Core/Elective)	Open Elective	
7.	Pre-requisites (course no./title)	None	
8.	Course Objectives(CO) :		
	1. To impart the knowledge in automobile materials and to equip the students to		
	meet the demands of automobile engineering.		
	2. Understand the fundamentals	of automobile engineering and different	
	components in automobile		
	3. Describe the importance and reaso	ons for using different types of material used in	
	automobiles		
	4. Understand future challenges and expectations in automobile engineering.		
9.	Course Syllabus:		
	Unit-1		
	Introduction to major systems, assemblies and components of an automobile and their		
	Functions; Materials Used in the Automotive Industry an Overview. Engine and Its		
	Components; Drive transmission and steering, Clutch assembly, Gear box assembly		
	(Transmission case assembly), Suspension and brake; Body and chassis.		
	Unit-2		
	Engine cylinder: Structure and functions, types, cylinder blocks materials and		
	manufacturing processes, improving engine components with surface modifications,		
	Piston: Structures and functions, types, pi	ston materials, piston manufacturing processes	
	Structure.		
	Unit-3		

	Function and materials for piston rings, camshaft, valves and valve seats, valve springs,			
	connecting rod, crankshaft, front axle and steering system, drive line, propeller shaft,			
	universal joints, wheels and suspension system.			
	Unit-4			
	Wheel, Different types of wheel rim, Tyre; Desirable Properties of a Tyre, Functions of			
	Tyre, Types of Tyre and Brake; Requirements of A good Braking System, Types of			
	Brake, Materials used in Brakes, friction and wear consideration in breaking			
	system.Introducing New Materials in the Automotive Industry Advances in			
	manufacturing and joining techniques.			
10.	Text Books			
	1. Hiroshi Yamagata, The Science and Technology of Materials in Automotive Engines,			
	Woodhead Publishing in Materials, 2005			
	2. Ganesan.V, Internal Combustion Engines, Tata-McGraw Hill Publishing Co., New			
	Delhi, 1994			
11.	Reference Books			
	1. Kamaraju Ramakrishna, Automobile Engineering, PHI, 2014			

8.4.2 Engineering Economics

1.	Department proposing the course	Metallurgical Engineering	
2.	Course Title	Engineering Economics	
3.	L-T-P Structure	3-0-0	
4.	Credits / # of period	3/30	
5.	Course number(Code)	MM108304MM	
6.	Status (Core/Elective)	Open Elective	
7.	Pre-requisites (course no./title)	None	
8.	Course Objectives(CO) :		
	1. To introduce the basic concept of Dema	and and Supply.	
	2. To introduce the basic concept of Forms of Business Organization, Money,		
	Banking, Foreign Trade.		
	3. To introduce the basic concept of Taxation, Depreciation, Trade Cycle.		
	4. Introduction to Accounting Principles.		
9.	Course Syllabus:		
	Unit-1		
	An idea of fundamental concepts of economics, its relationship with engineering and		
	technology. Factors of Production: Characteristics and importance of Demand and		
	Supply analysis, elasticity of demand, Price determination, Laws of returns, monopoly.		
	G.N.P. and National income: Importance, distribution, Direct and indirect taxes, taxes		
	and industrial development, elementary idea of theory of employment.		
	Unit-2		
	Meaning and function of money and bank, value of money and its fluctuations, Quantity		
	theory of money, Gresham's law, Devaluation of money, foreign trade. Industrialization:		
	Factory system of production, its advantages, limitations and problems, small scale		
	industries, problems of small scale industries in India, Comparative merits and demerits		
	of small and large scale industries.		
	Unit-3		
	Partnership, joint stock company cooperati	ve societies, limited and unlimited liabilities.	
	Financing by Banks and specialized institutions, stock exchange and money market		
	credit instruments, shares, debentures and b	oonds. Depreciation, Depreciation accounting	
	Methods of calculating depreciation.		

	Unit-4		
	Book keeping and accounting:Importance of accounting for engineers, engineer as a		
	controller of finances, elements of double entry system of book-keeping, preparation of		
	journal and ledger accounts, Interest and profit analysis, Trial balance, Manufacturing		
	and profit and loss accounts, Balance sheet. Elements of cost, components of cost, cost		
	accounting, procedure of costing, costing methods, cost control.		
10.	Text Books:-		
	1. Engineering Economics – By Tarachand.		
	2. Industrial Organisation and Engineering Economics, By T.R. Banga and S.C. Sharma.		
11.	Reference Books :-		
	1. Industrial engineering and Management system, Dalela, Dr.Mansoor Ali.		
	2. Engineering Economics, Accounts and Management By S. Prasad.		
	3. Industrial Engineering & Management By O.P. Khanna.		